Recurrent Neural Networks

CS 6384 Computer Vision Professor Yu Xiang The University of Texas at Dallas

Some slides of this lecture are courtesy Stanford CS231n

NIV

Single Images

Convolutional neural networks

High-level information

- Depth
- Object classes
- Object poses
- Etc.

Sequential Data

- Data depends on time
 - Video

• Sentence

UT Dallas is a rising public research university in the heart of DFW.

Sequential Data Labeling

• Video frame labeling

Frames of a Video

https://bleedai.com/human-activity-recognition-using-tensorflow-cnn-lstm/

Sequential Data Labeling

Part-of-speech tagging (grammatical tagging)

Teg	Meening	English Examples
Tag	Meaning	English Examples
ADJ	adjective	new, good, high, special, big, local
ADP	adposition	on, of, at, with, by, into, under
ADV	adverb	really, already, still, early, now
CONJ	conjunction	and, or, but, if, while, although
DET	determiner, article	the, a, some, most, every, no, which
NOUN	noun	year, home, costs, time, Africa
NUM	numeral	twenty-four, fourth, 1991, 14:24
PRT	particle	at, on, out, over per, that, up, with
PRON	pronoun	he, their, her, its, my, I, us
VERB	verb	is, say, told, given, playing, would
•	punctuation marks	.,;1
х	other	ersatz, esprit, dunno, gr8, univeristy

Sequential Data Labeling

Recurrent Neural Networks

Hidden State Update

Using the Hidden State

Recurrent Neural Networks

Vanilla RNN

RNN Computation Graph

The same set of weights for different time steps $\ f_W \ f_{W'}$

Backpropagation through Time

Truncated Backpropagation through Time

Run forward and backward through chunks of the sequence instead of whole sequence

Truncated Backpropagation through Time

Carry hidden states forward in time forever, but only backpropagate for some smaller number of steps

Truncated Backpropagation through Time

$$\frac{\partial L}{\partial W} = \sum_{t=1}^{T} \frac{\partial L_t}{\partial W}$$
$$\frac{\partial L_T}{\partial W} = \frac{\partial L_T}{\partial h_T} \frac{\partial h_t}{\partial h_{t-1}} \dots \frac{\partial h_1}{\partial W} = \frac{\partial L_T}{\partial h_T} (\prod_{t=2}^{T} \frac{\partial h_t}{\partial h_{t-1}}) \frac{\partial h_1}{\partial W}$$

$$rac{\partial L_T}{\partial W} = rac{\partial L_T}{\partial h_T} (\prod_{t=2}^T rac{\partial h_t}{\partial h_{t-1}}) rac{\partial h_1}{\partial W}$$

https://en.wikipedia.org/wiki/Matrix_norm

 Vanishing gradients $\|\frac{\partial h_t}{\partial h_{t-1}}\|_2 < 1$

 Exploding gradients

$$\|\frac{\partial h_t}{\partial h_{t-1}}\|_2 > 1$$

• Exploding gradients

$$\|\frac{\partial h_t}{\partial h_{t-1}}\|_2 > 1$$

01

- Gradient clipping
- grad_norm = np.sum(grad * grad)
 if grad_norm > threshold:
 grad *= (threshold / grad_norm)
- Vanishing gradients

$$\|\frac{\partial h_t}{\partial h_{t-1}}\|_2 < 1$$

• Change RNN architecture

Long Short Term Memory (LSTM)

Long Short Term Memory (LSTM)

0

g

4*h

tanh

Long Short Term Memory (LSTM)

- Make the RNN easier to preserve information over many steps
 - E.g., f = 1 and i = 0
 - This is difficult for vanilla RNN
- LSTM does not guarantee that there is no vanishing or exploding gradient
- It provides an easier way to learn longdistance dependencies

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$
$$c_t = f \odot c_{t-1} + i \odot g$$
$$h_t = o \odot \tanh(c_t)$$

Gated Recurrent Unit (GRU)

https://en.wikipedia.org/wiki/Gated recurrent unit

$$egin{aligned} & z_t = \sigma_g(W_z x_t + U_z h_{t-1} + b_z) \ & r_t = \sigma_g(W_r x_t + U_r h_{t-1} + b_r) \ & \hat{h}_t = \phi_h(W_h x_t + U_h(r_t \odot h_{t-1}) + b_h) \ & h_t = (1-z_t) \odot h_{t-1} + z_t \odot \hat{h}_t \end{aligned}$$

- x_t : input vector
- h_t : output vector
- \hat{h}_t : candidate activation vector
- z_t : update gate vector
- r_t : reset gate vector
- ullet W, U and b: parameter matrices and vector

GRUs vs. LSTMs

- Both have a forget gate
- GRU has fewer parameters, no output gate
- GRUs have similar performance compared to LSTMs, have shown better performance on certain datasets

Recurrent Neural Networks

many to many

E.g., action recognition on video frames

E.g., image captioning, image -> sequences of words E.g., action prediction, sequences of frames -> action class E.g., Video Captioning Sequence of video frames -> caption

Recurrent Units on CNN Features

Summary

- RNNs can be used for sequential data to capture dependencies in time
- LSTMs and GRUs are better then vanilla RNNs
- It is difficult to capture long-term dependencies in RNNs
- Use transformers (next lecture)

Further Reading

- Stanford CS231n, lecture 10, Recurrent Neural Networks <u>http://cs231n.stanford.edu/</u>
- Long Short Term Memory <u>https://www.researchgate.net/publication/13853244 Long Short-</u> <u>term Memory</u>
- Gated Recurrent Units <u>https://arxiv.org/pdf/1412.3555.pdf</u>