Epipolar Geometry and Stereo

CS 6384 Computer Vision
Professor Yu Xiang
The University of Texas at Dallas

Depth Perception

- Metric
- The car is 10 meters away
- Ordinary
- The tree is behind the car

Depth Cues

- Information for sensory stimulation that is relevant to depth perception
- Monocular cues: single eye

"Paris Street, Rainy Day," Gustave Caillebotte, 1877. Art Institute of Chicago
- Stereo cues: both eyes
- Texture of the bricks
- Perspective projection
- Etc.

Monocular Depth Cues

Retinal Image

Retina image size

Shadow

Height in visual field

Motion parallax (relative difference in speed) Further objects move slower

Atmospheric cue
further away because it has lower contrast

Stereo Depth Cues

- Binocular disparity
- Each eye provides a different viewpoint, which results in different images on the retina

Epipolar Geometry

- The geometry of stereo vision
- Given 2D images of two views
- What is the relationship between pixels of the images?
- Can we recover the 3D structure of the world from the 2D images?

Wikipedia

Epipolar Geometry

Epipolar Geometry

Epipolar Geometry

Rotation and Translation
between two views

Epipolar Geometry

- What is the mapping for a point in one image to its epipolar line?

Fundamental Matrix

- Recall camera projection

$$
\begin{aligned}
& P=K[R \mid \mathbf{t}] \\
& \mathbf{x}=P \mathbf{X} \quad \text { Homogeneusus coordinates }
\end{aligned}
$$

- Backprojection

$$
P^{+} \mathbf{X} \text { and } C \text { are two points on the ray }
$$

$$
P^{+} \text {is the pseudo-inverse of } P, P P^{+}=I
$$

$$
P^{+}=P^{T}\left(P P^{T}\right)^{-1}
$$

$$
\mathbf{X}(\lambda)=(1-\lambda) P^{+} \mathbf{x}+\lambda C
$$

Fundamental Matrix

$P^{+} \mathbf{X}$ and C are two points on the ray

- Project to the other image

$$
P^{\prime} P^{+} \mathbf{x} \text { and } P^{\prime} C
$$

- Epipolar line

$$
\mathbf{l}^{\prime}=\left(P^{\prime} C\right) \times\left(P^{\prime} P^{+} \mathbf{x}\right)
$$

$$
{ }_{\text {Epipole }} \mathbf{e}^{\prime}=\left(P^{\prime} C\right)
$$

Cross product matrix

$$
\mathbf{l}^{\prime}=\left[\mathbf{e}^{\prime}\right] \times\left(P^{\prime} P^{+} \mathbf{x}\right)
$$

Fundamental Matrix

- Epipolar line

Fundamental Matrix

$$
\underset{\text { coppuburpanem } \pi}{\times} \quad F=\left[\mathbf{e}^{\prime}\right]_{\times} P^{\prime} P^{+} \quad \mathbf{e}^{\prime}=\left(P^{\prime} C\right)
$$

$$
\mathrm{P}=\mathrm{K}[\mathrm{I} \mid \mathbf{0}] \quad \mathrm{P}^{\prime}=\mathrm{K}^{\prime}[\mathrm{R} \mid \mathbf{t}]
$$

$$
\mathrm{P}^{+}=\left[\begin{array}{c}
\mathrm{K}^{-1} \\
\mathbf{0}^{\top}
\end{array}\right]
$$

$$
\mathbf{C}=\binom{\mathbf{0}}{1}
$$

$\left.R, t \quad \mathrm{~F}={ }_{[\mathrm{P}} \mathbf{\prime} \mathbf{C}\right]_{\times} \mathrm{P}^{\prime} \mathrm{P}^{+}$

$$
=\left[\mathrm{K}^{\prime} \mathbf{t}\right]_{\times} \mathrm{K}^{\prime} \mathrm{RK}^{-1}=\mathrm{K}^{\prime-\top}[\mathbf{t}]_{\times} \mathrm{RK}^{-1}=\mathrm{K}^{\prime-\top} \mathrm{R}\left[\mathrm{R}^{\top} \mathbf{t}\right]_{\times} \mathrm{K}^{-1}=\mathrm{K}^{\prime-\top} \mathrm{RK}^{\top}\left[\mathrm{KR}^{\top} \mathbf{t}\right]_{\times}
$$

$e=P\binom{-R^{\top} t}{1}=K R^{\top} t$

$$
\mathrm{e}^{\prime}=\mathrm{P}^{\prime}\binom{0}{1}=\mathrm{K}^{\prime} \mathrm{t}
$$

$$
\mathrm{F}=\left[\mathbf{e}^{\prime}\right]_{\times} \mathrm{K}^{\prime} \mathrm{RK}^{-1}=\mathrm{K}^{\prime-\mathrm{T}}[\mathbf{t}]_{\times} \mathrm{RK}^{-1}=\mathrm{K}^{\prime-\mathrm{T}} \mathrm{R}\left[\mathrm{R}^{\top} \mathbf{t}\right]_{\times} \mathrm{K}^{-1}=\mathrm{K}^{\prime-\mathrm{T}} \mathrm{RK}^{\top}[\mathbf{e}]_{\times}
$$

Properties of Fundamental Matrix

$$
\begin{gathered}
\mathbf{x}^{\prime} \text { is on the epiploar line } \mathbf{l}^{\prime}=F \mathbf{x} \\
\mathbf{x}^{\prime T} F \mathbf{x}=0
\end{gathered}
$$

- Transpose: if F is the fundamental matrix of $\left(P, P^{\prime}\right)$, then F^{\top} is the fundamental matrix of $\left(P^{\prime}, P\right)$
- Epipolarline: $\mathbf{l}^{\prime}=F \mathbf{x} \quad \mathbf{l}=F^{T} \mathbf{x}^{\prime}$
- Epipole: $\quad \mathbf{e}^{\prime \top} \mathrm{F}=\mathbf{0} \quad \mathrm{Fe}=\mathbf{0}$

$$
\mathbf{e}^{\prime \top}(\mathrm{Fx})=\left(\mathrm{e}^{\prime \top} \mathrm{F}\right) \mathbf{x}=0 \text { for all } \mathbf{x}
$$

- 7 degrees of freedom

$$
\operatorname{det} F=0
$$

Why the Fundamental Matrix is Useful?

Estimating the Fundamental Matrix

- The 8-point algorithm

$$
\mathrm{x}^{\prime \top} \mathrm{Fx}=0
$$

Estimating the Fundamental Matrix

$$
\begin{gathered}
\mathbf{x}^{\prime \top} \mathbf{F} \mathbf{x}=0 \quad \mathbf{x}=(x, y, 1)^{\top} \quad \mathbf{x}^{\prime}=\left(x^{\prime}, y^{\prime}, 1\right)^{\top} \\
x^{\prime} x f_{11}+x^{\prime} y f_{12}+x^{\prime} f_{13}+y^{\prime} x f_{21}+y^{\prime} y f_{22}+y^{\prime} f_{23}+x f_{31}+y f_{32}+f_{33}=0 \\
\left(x^{\prime} x, x^{\prime} y, x^{\prime}, y^{\prime} x, y^{\prime} y, y^{\prime}, x, y, 1\right) \mathbf{f}=0
\end{gathered}
$$

n correspondences

$$
\text { Af }=\left[\begin{array}{ccccccccc}
x_{1}^{\prime} x_{1} & x_{1}^{\prime} y_{1} & x_{1}^{\prime} & y_{1}^{\prime} x_{1} & y_{1}^{\prime} y_{1} & y_{1}^{\prime} & x_{1} & y_{1} & 1 \\
\vdots & \\
x_{n}^{\prime} x_{n} & x_{n}^{\prime} y_{n} & x_{n}^{\prime} & y_{n}^{\prime} x_{n} & y_{n}^{\prime} y_{n} & y_{n}^{\prime} & x_{n} & y_{n} & 1
\end{array}\right] \mathbf{f}=\mathbf{0}
$$

Linear System

$A \mathbf{f}=0$ $n \times 9 \quad 9 \times 1$

- Find non-zero solutions
- If f is a solution, kxf is also a solution for $k \in \mathcal{R}$
- If the rank of A is 8 , unique solution (up to scale)
- Otherwise, we can seek a solution $\|\mathbf{f}\|=1$

Estimating the Fundamental Matrix

- The singularity constraint $\operatorname{det} F=0$

\[

\]

Special Case: A Stereo System

Special Case: A Stereo System

- Left camera

$$
x_{l}=f \frac{X}{Z}+p_{x} \quad y_{l}=f \frac{Y}{Z}+p_{y}
$$

- Right camera
right
camera
located at
$\left(T_{x}, 0,0\right)$

$$
\begin{aligned}
& x_{r}=f \frac{X-T_{x}}{Z}+p_{x} \\
& y_{r}=f \frac{Y}{Z}+p_{y}
\end{aligned}
$$

Stereo Disparity

- Disparity

Recall motion parallax: near objects move faster (large disparity)

Special Case: A Stereo System

$$
\begin{aligned}
& \mathrm{P}=\mathrm{K}[\mathrm{I} \mid \mathbf{0}] \quad \mathrm{P}^{\prime}=\mathrm{K}[\mathrm{I} \mid \mathbf{t}] \\
& \mathrm{F}=\left[\mathrm{e}^{\prime}\right]_{\times} \mathrm{K}^{\prime} \mathrm{RK}^{-1}=\mathrm{K}^{\prime-T}[t]_{\times} \mathrm{RK}^{-1}=\mathrm{K}^{\prime-}{ }^{\mathrm{T}} \mathrm{R}\left[\mathrm{R}^{\top} \mathrm{t}\right]_{\times} \mathrm{K}^{-1}=\mathrm{K}^{\prime-\top} \mathrm{RK}^{\top}[e]_{\times} \\
& \text {right } \\
& \text { camera } \\
& \begin{array}{l}
\text { located at } \\
\left(T_{x}, 0,0\right)
\end{array} \\
& \mathrm{F}=\left[\mathbf{e}^{\prime}\right]_{\times} \mathrm{KK}^{-1}=\left[\mathbf{e}^{\prime}\right]_{\times} \\
& \mathbf{e}^{\prime}=\left(P^{\prime} C\right) \quad \mathbf{C}=\binom{\mathbf{0}}{1} \\
& K=\left[\begin{array}{ccc}
f_{x} & 0 & p_{x} \\
0 & f_{y} & p_{y} \\
0 & 0 & 1
\end{array}\right] \quad \mathbf{e}^{\prime}=\left[\begin{array}{c}
f_{x} T_{x} \\
0 \\
0
\end{array}\right] \quad F=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -f_{x} T_{x} \\
0 & f_{x} T_{x} & 0
\end{array}\right] \quad \begin{array}{c}
\mathbf{x}^{\prime T} F \mathbf{x}=0 \\
y=y^{\prime}
\end{array}
\end{aligned}
$$

Stereo Example

Disparity values (0-64)

Note how disparity is larger (brighter) for closer surfaces.

Computing Disparity

- Eipipolar lines are horizontal lines in stereo
- For general cases, we can find correspondences on eipipolar lines
- Depth from disparity

$$
Z=f \frac{T_{x}}{d}
$$

Triangulation

- Compute the 3D point given image correspondences

Intersection of two backprojected lines

$$
\mathbf{X}=\mathbf{l} \times \mathbf{l}^{\prime}
$$

Triangulation

- In practice, we find the correspondences y \mathbf{y}^{\prime}

- The backprojected lines may not intersect
- Find X^{*} that minimizes

Further Reading

- Stanford CS231A: Computer Vision, From 3D Reconstruction to Recognition, Lecture 5 https://web.stanford.edu/class/cs231a/syllabus.html
- Multiview Geometry in Computer Vision, Richard Hartley and Andrew Zisserman, Chapter 9, Epipolar Geometry and Fundamental Matrix

