Camera Calibration and Pose Estimation

CS 6384 Computer Vision
Professor Yu Xiang

The University of Texas at Dallas

Some slides of this lecture are courtesy Silvio Savarese




Recap Camera Models

* Camera projection matrix
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Camera Calibration

e Estimate the camera intrinsics and camera extrinsics P p—— K[R‘t]

* Why is this useful?
* If we know K and depth, we can compute 3D points in camera frame

* |n stereo matching to compute depth, we need to know focal length

e Camera pose tracking is critical in SLAM (Simultaneous Localization and
Mapping)




Camera Calibration

e Estimate the camera intrinsics and camera extrinsics P p—— K[R‘t]

* |[dea: using images from the camera with a known world coordinate
frame
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Camera Calibration
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* Unknowns

Camera intrinsics B

Camera extrinsics: R
A

rotation and translation

e Knowns

World coordinates Py, ..., P,

Pixel coordinates P1,...,Pn
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* We need 11 equations
* 6 correspondences
* More correspondences are better




A Linear Approach to Camera Calibration
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A Linear Approach to Camera Calibration

* Given n correspondences p; = — P;
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How to solve this linear system?




Linear System

Pm=20

2n x 12 12 x 1

* Find non-zero solutions
* If mis a solution, kxm is also a solution for k € R
» We can seek a solution ||m|| =1

min

Subject to ‘

Solution: P = U DVT SVD decomposition of P
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m is the IaSt Column Of \/ A5.3in Multiview Geometry in

Computer Vision




A Linear Approach to Camera Calibration

Pm =20

m is the last column of V

m —) M Up to scale

pi = MP; = K[R|T|P

How to extract K, Rand T from M?
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A Linear Approach to Camera Calibration
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A Linear Approach to Camera Calibration
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Camera Calibration with a 2D Plane

Harris Corner Detection

http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration




Camera Calibration with a 2D Plane
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A Flexible New Technique for Camera Calibration. Zhengyou Zhang, TPAMI, 2000.




Camera Calibration with a 2D Plane

* Homography between the model plane and its image
* Given the correspondences, we can estimate H H = A[ r{ ro t ]

H = [hl hQ hg] [hl hQ hg] = AA [I’l I's t]

leen n |mages 2n equatlons for A
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A Flexible New Technique for Camera Calibration. Zhengyou Zhang, TMAPI. 2000. Solve the linear system for A




Camera Calibration with a 2D Plane

* Homography between the model plane and its image
[hl hQ hg] =DV.\ [I'l I'o t]

Extrinsics

I = )\A_lhl o = )\A_lhg s =1r1 Xro t= )\A_lhg

Afterwards, refine all the parameters including lens distortion parameters
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A Flexible New Technique for Camera Calibration. Zhengyou Zhang, TPAMI, 2000.




Calibration Patterns
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Chessboard Square Grid Circle Hexagonal Grid

https://github.com/arpg/Documentation/tree/master/Calibration

Circle Regular Grid ECoCheck

https://boofcv.org/index.php?title=Tutorial Camera Calibration
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https://boofcv.org/index.php?title=Tutorial_Camera_Calibration
https://github.com/arpg/Documentation/tree/master/Calibration

Camera Pose Estimation

e Estimate the 3D rotation and 3D translation of a camera with respect
to some world coordinate frame

y T 3D Rotation R R y

World Coordinates

Two cases: with known or unknown camera intrinsics




Camera Pose Estimation

e Using visibility of features in the real world

e Natural Features

by * No setup cost
Features in Image * A difficult problem
Focal Point ,%mes in World e Artificial features
. \ /‘ * Print a special tag
x Image Plane




QR Code for Pose Estimation

* Using the 4 corners of a QR code as features

https://visp-doc.inria.fr/doxygen/visp-daily/tutorial-pose-estimation-qrcode.html




The Perspective-n-Point (PnP) Problem

e Given/known variables 1"
* A set of n 3D points in the world coordinates Pw . / in World
* Their projections (2D coordinates) on animage Pe . | s —
* Cameraintrinsics [

x Image Plane

e Unknown variables

* 3D rotation of the camera with respective to the world coordinates |
* 3D translation of the camera [’
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The PnP Problem with QR Code

World

10/6/2021



The Perspective-n-Point (PnP) Problem

* 6 degrees of freedom (DOFs)
* 3 DOF rotation, 3 DOF translation

e Each feature that is visible eliminates 2 DOFs

N Fﬁﬁ:;:i:::::f§;;iBQFs
P1pP P2pP




The PnP Problem

* Many different algorithms to solve the PnP problem

* General idea B
* Retrieve the coordinates of the 3D points in the camera coordinate system pz

* Compute rotation and translation that align the world coordinates and the
camera coordinates

R, T
p;U ‘ pz
s
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P3P X =|PA| Y = |PB| Z = |PC|
Depths of the 3 pixels

P X, Y, / are the unknowns
I\
X,O/BQ"%\ ( Y2+ 27?2 -YZp—ad? =0
. ¢ N awofcosines 8 22+ X2 — X Zq — b2 = ()
\ X?2+Y? - XYr—c?=0.

p=2cosa a = |BC
g=2cosfB b =|AC
r=2cosy ¢ =|AB)




P3P

* Find the solutions for X, Y, Z (depth of
the 3 pixels)

* Obtain the coordinates of A, B, Cin
camera frame

 Compute R and T using the coordinates
of A, B, Cin camera frame and in world
frame




Rotation and Translation from Two Point Sets

R, T
p;U ‘ pz

Closed-form solution

K.S. Arun, T.S. Huang, and S.D. Blostein. Least-Squares Fitting of Two 3-D Points Sets. /EEE Transactions on
Pattern Analysis and Machine Intelligence, 9(5):698—700, 1987.
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) 2

L= 2 |pl — (Rp; + T)||"

Or https://cs.emu.edu/~kosecka/cs685/cs685-icp.pdf



https://cs.gmu.edu/~kosecka/cs685/cs685-icp.pdf

EPNP

* EPnP: uses 4 control points ¢;, j7=1,...,4

4
3D coordinates in the world frame ~ P; = E oz@-jc;f” Known, we can select the control
j=1 points in the world frame
4
Weights E a;; =1 Known
=1
4
3D coordinates in the camera frame p; = E Qi C; Unknown
J=1

EPnP: An Accurate O(n) Solution to the PnP Problem. Lepetit et al., IJCV’09.




EPNP

* Projection of the points in the camera frame
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EPnP: An Accurate O(n) Solution to the PnP Problem. Lepetit et al., IJCV’09.
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EPnP: An Accurate O(n) Solution to the PnP Problem. Lepetit et al., IJCV’09.




EPNP

T
] See. Lepetit et al., IJCV'09

* Solve Mlx = () toobtain x = [C(fT cs',c§ e’
 Compute 3D coordinates in camera frame p; = Zaijc§
* We know the 3D coordinates in world frame p¥ =Y a;;c¥

 Compute R and T using the two sets of 3D coordinates

R, T
p;U ‘ pz

EPnP: An Accurate O(n) Solution to the PnP Problem. Lepetit et al., IJCV’09.




PNP In practice  .comems

enum cv::SolvePnPMethod

#include <opencv2/calib3d.hpp>

e SolvePnPMethod |
Enumerator
- O CV SOLVERPNP_ITERATIVE
I n p e n Python: cv. SOLVERPNF_ITERATIVE
SOLVEPNP_EPMP
Python: cv.SOLVERPNF_EPNP

EPnPF: Efficient Perspective-n-Point Camera Pose Estimation [125].

SOLVEPNP_P3P

Complete Solution Classification for the Perspective-Three-Point Problem [80].
Python: cv.SOLVEPNP_P3P

SOLVEPNP_DLS Broken implementation. Using this flag will fallback to EPnP.

Python: cv.SOLVEPNP_DLS A Direct Least-Squares (DLS) Method for PnP [101]

SOLVEPNP_UPNP Broken implementation. Using this flag will fallback to EPnP.

Python: cv. SOLVERPNF_UPMNP Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation [169]

SOLVEPNP_AP3P

An Efficient Algebraic Solution to the Perspective-Three-Point Problem [114].
Python: cv. SOLVEPNP_AP3P

SOLVEPNP_IPPE Infinitesimal Plane-Based Pose Estimation [46]
Python: cv. SOLVEPNP_IPPE Object points must be coplanar.
SOLVEPNP_IPPE_SQUARE Infinitesimal Plane-Based Pose Estimation [46]

Python: cv. SOLVEFPNP_IPPE_SQUARE | This is a special case suitable for marker pose estimation.
4 coplanar object points must be defined in the following order:

« point O: [-squareLength / 2, squareLength / 2. 0]
« point 1: [ squareLength / 2, squareLength / 2, 0]
« point 2: [ squareLength / 2, -squareLength / 2, 0]
» point 3: [-squareLength / 2, -squareLength / 2, 0]

SOLVEPNP_SQFNP

SQPNP: A Consistently Fast and Globally OptimalSolution to the Perspective-n-Point Problem [208].
Python: cv. SOLVEPNP_SQPNP




QR Code Pose Tracking Example

https://levelup.gitconnected.com/qgr-code-scanner-in-kotlin-e15dd9bfbb1f




Further Reading

» Stanford CS231A: Computer Vision, From 3D Reconstruction to Recognition,
Lecture 3 https://web.stanford.edu/class/cs231a/syllabus.html

* A Flexible New Technique for Camera Calibration. Zhengyou Zhang, TPAMI. 2000.
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr98-

71.pdf

 EPnP: An Accurate O(n) Solution to the PnP Problem. Lepetit et al., [JCV’09.
https://www.tugraz.at/fileadmin/user upload/Institute/ICG/Images/team lepeti
t/publications/lepetit ijcv08.pdf
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https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr98-71.pdf
https://www.tugraz.at/fileadmin/user_upload/Institute/ICG/Images/team_lepetit/publications/lepetit_ijcv08.pdf
https://www.tugraz.at/fileadmin/user_upload/Institute/ICG/Images/team_lepetit/publications/lepetit_ijcv08.pdf
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