Camera Calibration and Pose Estimation

CS 6384 Computer Vision
Professor Yu Xiang

The University of Texas at Dallas

Some slides of this lecture are courtesy Silvio Savarese

Recap Camera Models

- Camera projection matrix

Camera intrinsics
Camera extrinsics:
rotation and translation

$$
K=\left[\begin{array}{ccc}
\alpha & -\alpha \cot \theta & c_{x} \\
0 & \frac{\beta}{\sin \theta} & c_{y} \\
0 & 0 & 1
\end{array}\right]
$$

Camera Calibration

- Estimate the camera intrinsics and camera extrinsics $P=K[R \mid \mathbf{t}]$
-Why is this useful?
- If we know K and depth, we can compute 3D points in camera frame
- In stereo matching to compute depth, we need to know focal length
- Camera pose tracking is critical in SLAM (Simultaneous Localization and Mapping)

Camera Calibration

- Estimate the camera intrinsics and camera extrinsics $P=K[R \mid \mathbf{t}]$
- Idea: using images from the camera with a known world coordinate frame

Camera Calibration

- Unknowns

Camera intrinsics K
$\begin{array}{ll}\text { Camera extrinsics: } \\ \text { rotation and translation }\end{array} \quad R, \Gamma$

- Knowns

World coordinates P_{1}, \ldots, P_{n}
Pixel coordinates

$$
p_{1}, \ldots, p_{n}
$$

Camera Calibration

$K=\left[\begin{array}{ccc}\alpha & -\alpha \cot \theta & c_{x} \\ 0 & \frac{\beta}{\sin \theta} & c_{y} \\ 0 & 0 & 1\end{array}\right]$

- How many unknowns in M ?
- 11
- How many correspondences do we need to estimate M ?
- We need 11 equations
- 6 correspondences
- More correspondences are better

A Linear Approach to Camera Calibration

$$
p_{i}=M P_{i}=K[R \mid T] P_{i}
$$

$$
M=\left[\begin{array}{l}
\mathbf{m}_{1} \\
\mathbf{m}_{2} \\
\mathbf{m}_{3}
\end{array}\right] \begin{aligned}
& 1 \times 4 \\
& 1 \times 4 \\
& 1 \times 4
\end{aligned} \quad M P_{i}=\left[\begin{array}{l}
\mathbf{m}_{1} P_{i} \\
\mathbf{m}_{2} P_{i} \\
\mathbf{m}_{3} P_{i}
\end{array}\right] \quad \begin{gathered}
p_{i}=\left[\begin{array}{c}
u_{i} \\
v_{i}
\end{array}\right]=\left[\begin{array}{l}
\frac{\mathbf{m}_{1} P_{i}}{\mathbf{m}_{3} P_{i}} \\
\frac{\mathbf{m}_{2} P_{i}}{\mathbf{m}_{3} P_{i}}
\end{array}\right]
\end{gathered}
$$

$$
\begin{array}{ll}
\text { A pair of equations } & u_{i}\left(m_{3} P_{i}\right)-m_{1} P_{i}=0 \\
& v_{i}\left(m_{3} P_{i}\right)-m_{2} P_{i}=0
\end{array}
$$

A Linear Approach to Camera Calibration

- Given n correspondences $p_{i}=\left[\begin{array}{l}u_{i} \\ v_{i}\end{array}\right] \leftrightarrow P_{i}$

$$
\begin{aligned}
u_{1}\left(m_{3} P_{1}\right)-m_{1} P_{1} & =0 \\
v_{1}\left(m_{3} P_{1}\right)-m_{2} P_{1} & =0
\end{aligned}
$$

$2 n$ equations

$$
\begin{aligned}
& u_{n}\left(m_{3} P_{n}\right)-m_{1} P_{n}=0 \\
& v_{n}\left(m_{3} P_{n}\right)-m_{2} P_{n}=0
\end{aligned}
$$

How to solve this linear system?

Linear System

$\mathbf{P} m=0$
 $$
2 n \times 12 \quad 12 \times 1
$$

- Find non-zero solutions
- If m is a solution, $\mathrm{k} \times \mathrm{m}$ is also a solution for $k \in \mathcal{R}$
- We can seek a solution $\|m\|=1$

$\min \\|\mathbf{P} m\\|$	Solution: $P=U D V^{T} \quad$ SVD decomposition of P
Subject to $\\|m\\|=1$	$2 n \times 12 \quad 12 \times 12 \quad 12 \times 12$
m is the last column of VA.s. in multiview Geometry in computervision	

A Linear Approach to Camera Calibration

$$
p_{i}=M P_{i}=K[R \mid T] P_{i}
$$

$$
\mathbf{P} m=0
$$

m is the last column of V
$m \rightarrow M$ uptosale
How to extract K, R and T from M ?

$$
\begin{gathered}
K=\left[\begin{array}{ccc}
\alpha & -\alpha \cot \theta & c_{x} \\
0 & \frac{\beta}{\sin \theta} & c_{y} \\
0 & 0 & 1
\end{array}\right] \quad \mathrm{R}=\left[\begin{array}{c}
\mathbf{r}_{1}^{\mathrm{T}} \\
\mathbf{r}_{2}^{\mathrm{T}} \\
\mathbf{r}_{3}^{\mathrm{T}}
\end{array}\right] \quad \mathrm{T}=\left[\begin{array}{c}
\mathrm{t}_{\mathrm{x}} \\
\mathrm{t}_{\mathrm{y}} \\
\mathrm{t}_{\mathrm{z}}
\end{array}\right] \\
3 \text { rows } \\
\rho M=\left[\begin{array}{cc}
\alpha r_{1}^{T}-\alpha \cot \theta r_{2}^{T}+c_{x} r_{3}^{T} & \alpha t_{x}-\alpha \cot \theta t_{y}+c_{x} t_{z} \\
\frac{\beta}{\sin \theta} r_{2}^{T}+c_{y} r_{3}^{T} \\
r_{3}^{T} & \frac{\beta}{\sin \theta} t_{y}+c_{y} t_{z} \\
\text { Scale }
\end{array}\right]
\end{gathered}
$$

A Linear Approach to Camera Calibration

$$
M=\frac{1}{\rho}\left[\begin{array}{cc}
\alpha r_{1}^{T}-\alpha \cot \theta r_{2}^{T}+c_{x} r_{3}^{T} & \alpha t_{x}-\alpha \cot \theta t_{y}+c_{x} t_{z} \\
\frac{\beta}{\sin \theta} r_{2}^{T}+c_{y} r_{3}^{T} & \frac{\beta}{\sin \theta} t_{y}+c_{y} t_{z} \\
r_{3}^{T} & t_{z}
\end{array}\right]=\left[\begin{array}{ll}
A & b
\end{array}\right]=\left[\begin{array}{l}
a_{1}^{T} \\
a_{2}^{T} \\
a_{3}^{T}
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

The rows of a rotation matrix are unit-length, perpendicular to each other Intrinsics

Extrinsics
$K=\left[\begin{array}{ccc}\alpha & -\alpha \cot \theta & c_{x} \\ 0 & \frac{\beta}{\sin \theta} & c_{y} \\ 0 & 0 & 1\end{array}\right]$

FP, Computer Vision: A
Modern Approach, Sec. 3.2.2

$$
\begin{aligned}
\rho & = \pm \frac{1}{\left\|a_{3}\right\|} \\
c_{x} & =\rho^{2}\left(a_{1} \cdot a_{3}\right) \\
c_{y} & =\rho^{2}\left(a_{2} \cdot a_{3}\right) \\
\theta & =\cos ^{-1}\left(-\frac{\left(a_{1} \times a_{3}\right) \cdot\left(a_{2} \times a_{3}\right)}{\left\|a_{1} \times a_{3}\right\| \cdot\left\|a_{2} \times a_{3}\right\|}\right)
\end{aligned}
$$

$$
\alpha=\rho^{2}\left\|a_{1} \times a_{3}\right\| \sin \theta
$$

$$
\beta=\rho^{2}\left\|a_{2} \times a_{3}\right\| \sin \theta
$$

$$
\begin{aligned}
r_{1} & =\frac{a_{2} \times a_{3}}{\left\|a_{2} \times a_{3}\right\|} \\
r_{2} & =r_{3} \times r_{1} \\
r_{3} & =\rho a_{3} \\
T & =\rho K^{-1} b
\end{aligned}
$$

A Linear Approach to Camera Calibration

$\mathbf{P} m=0$

All 3D points should NOT be on the same plane. Otherwise, no solution

FP, Computer Vision: A
Modern Approach, Sec. 1.3

Camera Calibration with a 2D Plane

Harris Corner Detection
http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration

Camera Calibration with a 2D Plane

- 3D point $P=\left[\begin{array}{c}X \\ Y \\ 0\end{array}\right]$

- Homography between the model plane and its image

Camera Calibration with a 2D Plane

- Homography between the model plane and its image
- Given the correspondences, we can estimate $\mathrm{H} \quad \mathbf{H}=\mathbf{A}\left[\begin{array}{lll}\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{t}\end{array}\right]$

$$
\mathbf{H}=\left[\begin{array}{lll}
\mathbf{h}_{1} & \mathbf{h}_{2} & \mathbf{h}_{3}
\end{array}\right] \quad\left[\begin{array}{lll}
\mathbf{h}_{1} & \mathbf{h}_{2} & \mathbf{h}_{3}
\end{array}\right]=\lambda \mathbf{A}\left[\begin{array}{lll}
\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{t}
\end{array}\right]
$$

$\mathbf{r}_{1} \mathbf{r}_{2}$ are orthogonal and with unit length
2 equations for intrinsics

$$
\begin{aligned}
\mathbf{h}_{1}^{T} \mathbf{A}^{-T} \mathbf{A}^{-1} \mathbf{h}_{2} & =0 \\
\mathbf{h}_{1}^{T} \mathbf{A}^{-T} \mathbf{A}^{-1} \mathbf{h}_{1} & =\mathbf{h}_{2}^{T} \mathbf{A}^{-T} \mathbf{A}^{-1} \mathbf{h}_{2}
\end{aligned}
$$

Given n images, 2 n equations for A

A Flexible New Technique for Camera Calibration. Zhengyou Zhang, TMAPI. 2000.
Solve the linear system for A

Camera Calibration with a 2D Plane

- Homography between the model plane and its image

$$
\left[\begin{array}{lll}
\mathbf{h}_{1} & \mathbf{h}_{2} & \mathbf{h}_{3}
\end{array}\right]=\lambda \mathbf{A}\left[\begin{array}{lll}
\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{t}
\end{array}\right]
$$

Extrinsics

$$
\mathbf{r}_{1}=\lambda \mathbf{A}^{-1} \mathbf{h}_{1} \quad \mathbf{r}_{2}=\lambda \mathbf{A}^{-1} \mathbf{h}_{2} \quad \mathbf{r}_{3}=\mathbf{r}_{1} \times \mathbf{r}_{2} \quad \mathbf{t}=\lambda \mathbf{A}^{-1} \mathbf{h}_{3}
$$

Afterwards, refine all the parameters including lens distortion parameters

$$
\sum_{i=1}^{n} \sum_{j=1}^{m}\left\|\mathbf{m}_{i j}-\hat{\mathbf{m}}\left(\mathbf{A}, \mathbf{R}_{i}, \mathbf{t}_{i}, \mathbf{M}_{j}\right)\right\|^{2}
$$

A Flexible New Technique for Camera Calibration. Zhengyou Zhang, TPAMI, 2000.

Calibration Patterns

https://github.com/arpg/Documentation/tree/master/Calibration
https://boofcv.org/index.php?title=Tutorial Camera Calibration

Camera Pose Estimation

- Estimate the 3D rotation and 3D translation of a camera with respect to some world coordinate frame

Camera Pose Estimation

- Using visibility of features in the real world

- Natural Features
- No setup cost
- A difficult problem
- Artificial features
- Print a special tag

QR code

QR Code for Pose Estimation

- Using the 4 corners of a QR code as features

https://visp-doc.inria.fr/doxygen/visp-daily/tutorial-pose-estimation-qrcode.html

The Perspective-n-Point (PnP) Problem

- Given/known variables
- A set of n 3D points in the world coordinates p_{w}
- Their projections (2D coordinates) on an image p_{c}
- Camera intrinsics K

- Unknown variables
- 3D rotation of the camera with respective to the world coordinates R
- 3D translation of the camera T
$s p_{\text {Unknown }} \boldsymbol{p}_{c}=K[R \mid T] p_{w} .\left[\begin{array}{c}u \\ v \\ 1\end{array}\right]=\left[\begin{array}{ccc}f_{x} & \gamma & u_{0} \\ 0 & f_{y} & v_{0} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{llll}r_{11} & r_{12} & r_{13} & t_{1} \\ r_{21} & r_{22} & r_{23} & t_{2} \\ r_{31} & r_{32} & r_{33} & t_{3}\end{array}\right]\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]$

The PnP Problem with QR Code

The Perspective-n-Point (PnP) Problem

- 6 degrees of freedom (DOFs)
- 3 DOF rotation, 3 DOF translation
- Each feature that is visible eliminates 2 DOFs

P1P

P2P

The PnP Problem

- Many different algorithms to solve the PnP problem
- General idea
- Retrieve the coordinates of the 3D points in the camera coordinate system \mathbf{P}_{i}^{C}
- Compute rotation and translation that align the world coordinates and the camera coordinates

P3P

$$
\mathbf{v}_{2} \cdot \mathbf{v}_{3}=\left\|\mathbf{v}_{2}\right\|\left\|\mathbf{v}_{3}\right\| \cos \alpha
$$

P3P

$$
X=|P A| Y=|P B| Z=|P C|
$$

Depths of the 3 pixels
X, Y, Z are the unknowns

$$
\text { law of cosines }\left\{\begin{array}{cc}
Y^{2}+Z^{2}-Y Z p-a^{\prime 2}=0 \\
Z^{2}+X^{2}-X Z q-b^{\prime 2}=0 \\
X^{2}+Y^{2}-X Y r-c^{\prime 2}=0 .
\end{array}\right.
$$

P3P

- Find the solutions for X, Y, Z (depth of the 3 pixels)
- Obtain the coordinates of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ in camera frame
- Compute R and T using the coordinates of A, B, C in camera frame and in world frame

Rotation and Translation from Two Point Sets

$\mathbf{p}_{i}^{w} \stackrel{R, T}{ } \mathbf{p}_{i}^{c}$

Closed-form solution

K.S. Arun, T.S. Huang, and S.D. Blostein. Least-Squares Fitting of Two 3-D Points Sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(5):698-700, 1987.

$$
\Sigma^{2}=\sum_{i=1}^{N}\left\|p_{i}^{\prime}-\left(R p_{i}+T\right)\right\|^{2} .
$$

Or https://cs.gmu.edu/~kosecka/cs685/cs685-icp.pdf

EPnP

- EPnP: uses 4 control points $\mathbf{c}_{j}, \quad j=1, \ldots, 4$

3D coordinates in the world frame $\quad \mathbf{p}_{i}^{w}=\sum_{j=1}^{4} \alpha_{i j} \mathbf{c}_{j}^{w}$
Known, we can select the control points in the world frame

Weights $\quad \sum_{j=1}^{4} \alpha_{i j}=1 \quad$ Known

3D coordinates in the camera frame $\quad \mathbf{p}_{i}^{c}=\sum_{j=1}^{4} \alpha_{i j} \mathbf{c}_{j}^{c} \quad$ Unknown
EPnP: An Accurate O(n) Solution to the PnP Problem. Lepetit et al., IJCV'09.

EPnP

- Projection of the points in the camera frame

$$
\begin{aligned}
& \forall i, w_{i}\left[\begin{array}{c}
\mathbf{u}_{i} \\
1
\end{array}\right]=K \mathbf{p}_{i}^{c}=K \sum_{j=1}^{4} \alpha_{i j} \mathbf{c}_{j}^{c} \\
& \forall i, w_{i}\left[\begin{array}{c}
u_{i} \\
v_{i} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
f_{u} & 0 & u_{c} \\
0 & f_{v} & v_{c} \\
0 & 0 & 1
\end{array}\right] \sum_{j=1}^{4} \alpha_{i j}\left[\begin{array}{c}
x_{j}^{c} \\
y_{j}^{c} \\
z_{j}^{c}
\end{array}\right]
\end{aligned}
$$

$$
\text { Unknown } \quad\left\{\left(x_{j}^{c}, y_{j}^{c}, z_{j}^{c}\right)\right\}_{j=1, \ldots, 4}\left\{w_{i}\right\}_{i=1 \ldots . n} \quad w_{i}=\sum_{j=1}^{4} \alpha_{i j} z_{j}^{c}
$$

[^0]
EPnP

$$
\begin{aligned}
\forall i, w_{i}\left[\begin{array}{c}
u_{i} \\
v_{i} \\
1
\end{array}\right] & =\left[\begin{array}{ccc}
f_{u} & 0 & u_{c} \\
0 & f_{v} & v_{c} \\
0 & 0 & 1
\end{array}\right] \sum_{j=1}^{4} \alpha_{i j}\left[\begin{array}{c}
x_{j}^{c} \\
y_{j}^{c} \\
z_{j}^{c}
\end{array}\right] \\
w_{i} & =\sum_{j=1}^{4} \alpha_{i j} z_{j}^{c}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{j=1}^{4} \alpha_{i j} f_{u} x_{j}^{c}+\alpha_{i j}\left(u_{c}-u_{i}\right) z_{j}^{c}=0 \\
& \sum_{j=1}^{4} \alpha_{i j} f_{v} y_{j}^{c}+\alpha_{i j}\left(v_{c}-v_{i}\right) z_{j}^{c}=0
\end{aligned}
$$

$$
\text { Unknown }\left\{\left(x_{j}^{c}, y_{j}^{c}, z_{j}^{c}\right)\right\}_{j=1, \ldots, 4}
$$

$\mathbf{M x}=\mathbf{0}$

$$
\mathbf{x}=\left[\mathbf{c}_{1}^{c \top}, \mathbf{c}_{2}^{c \top}, \mathbf{c}_{3}^{c \top}, \mathbf{c}_{4}^{c \top}\right]^{\top} 12 \times 1
$$

\mathbf{M} is a $2 n \times 12$ matrix

EPnP: An Accurate O(n) Solution to the PnP Problem. Lepetit et al., IJCV'09.

EPnP

- Solve $\mathbf{M x}=\mathbf{0}$ to obtain $\mathbf{x}=\left[\mathbf{c}_{1}^{c \top}, \mathbf{c}_{2}^{c \top}, \mathbf{c}_{3}^{c \top}, \mathbf{c}_{4}^{c \top}\right]^{\top}$ See. Lepetit etal., ıcvo'99
- Compute 3D coordinates in camera frame $\mathbf{p}_{i}^{c}=\sum_{j=1}^{4} \alpha_{i j} \mathbf{c}_{j}^{c}$
- We know the 3D coordinates in world frame $\mathbf{p}_{i}^{w}=\sum_{j=1}^{4} \alpha_{i j} \mathbf{c}_{j}^{w}$
- Compute R and T using the two sets of 3D coordinates

EPnP: An Accurate O(n) Solution to the PnP Problem. Lepetit et al., IJCV'09.

PnP in practice

- SolvePnPMethod in OpenCV

- SolvePnPMethod
enum cv::SolvePnPMethod

\#include <opencv2/calib3d.hpp>

Enumerator	
SOLVEPNP_ITERATIVE Python: cv.SOLVEPNP_ITERATIVE	
SOLVEPNP_EPNP Python: cv.SOLVEPNP_EPNP	EPnP: Efficient Perspective-n-Point Camera Pose Estimation [125].
SOLVEPNP_P3P Python: cv.SOLVEPNP_P3P	Complete Solution Classification for the Perspective-Three-Point Problem [80].
SOLVEPNP_DLS Python: cv.SOLVEPNP_DLS	Broken implementation. Using this flag will fallback to EPnP. A Direct Least-Squares (DLS) Method for PnP [101]
SOLVEPNP_UPNP Python: cv.SOLVEPNP_UPNP	Broken implementation. Using this flag will fallback to EPnP. Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation [169]
SOLVEPNP_AP3P Python: cv.SOLVEPNP_AP3P	An Efficient Algebraic Solution to the Perspective-Three-Point Problem [114].
SOLVEPNP_IPPE Python: cv.SOLVEPNP_IPPE	Infinitesimal Plane-Based Pose Estimation [46] Object points must be coplanar.
SOLVEPNP_IPPE_SQUARE Python: cv.SOLVEPNP_IPPE_SQUARE	Infinitesimal Plane-Based Pose Estimation [46] This is a special case suitable for marker pose estimation. 4 coplanar object points must be defined in the following order: - point 0 : [-squareLength / 2 , squareLength $/ 2,0$] - point 1: [squareLength / 2 , squareLength $/ 2,0$] - point 2: [squareLength / 2 , -squareLength / 2, 0] - point 3: [-squareLength / 2 , -squareLength / 2,0]
SOLVEPNP_SQPNP Python: cv.SOLVEPNP_SQPNP	SQPnP: A Consistently Fast and Globally OptimalSolution to the Perspective-n-Point Problem [208]

QR Code Pose Tracking Example

https://levelup.gitconnected.com/qr-code-scanner-in-kotlin-e15dd9bfbb1f

Further Reading

- Stanford CS231A: Computer Vision, From 3D Reconstruction to Recognition, Lecture 3 https://web.stanford.edu/class/cs231a/syllabus.html
- A Flexible New Technique for Camera Calibration. Zhengyou Zhang, TPAMI. 2000. https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr9871.pdf
- EPnP: An Accurate O(n) Solution to the PnP Problem. Lepetit et al., IJCV’09. https://www.tugraz.at/fileadmin/user upload/Institute/ICG/Images/team lepeti t/publications/lepetit ijcv08.pdf

[^0]: EPnP: An Accurate O(n) Solution to the PnP Problem. Lepetit et al., IJCV'09.

