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1 Introduction
For the computer vision course project, students can choose a topic related to computer vision,
and explore the topic in one of the three different ways:

• Research-oriented. In this direction, students are going to propose a new idea that has not
been explored before in the literature, then implement the new idea and conduct experiments
to verify it.

• Application-oriented. In this direction, students can apply an existing computer vision
algorithm or method to a new problem or a new application. For example, if a method is
proposed for domain A, the project can explore applying the method to domain B where
different data are collected.

• Implementation-oriented. In this direction, students can select an existing computer
vision algorithm or method, and then implement it and conduct experiments to verify the
implementation. Since most computer vision methods are open-source these days, for
implementation-oriented projects, students cannot just use an open-source code and run
experiments with it.

For project evaluation, all three categories will be considered equally. A project will be evaluated
according its quality in terms of implementation, experiments, presentation and writing, regardless
of its category. However, students are encouraged to consider research-oriented projects and
application-oriented projects. Even if the introduced novelty is incremental, it is still exploring
new things researchers have not been tried before or applying an approach to new applications.
Moreover, collecting real-world data for testing is highly encouraged.

2 Proposal Format
The project proposal should be prepared using the CVPR latex template. A useful online LaTex
tool is Overleaf https://www.overleaf.com/. We have the CVPR latex template accessible here
via overleaf: https://www.overleaf.com/read/gpjssbtrrpqm. You can download a copy of the
template or make a copy in overleaf for your own project, and then edit it.

The project proposal should be a 1-page PDF using the latex template with the following items:
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• Title. Let’s give a name to your project.

• Team Members. List the names of the team members as the authors in the proposal. We
expect you to work in groups of 2-4 students for the course projects.

• Problem Statement. Describe what is the problem you are trying to solve in this project.

• Approach. Describe what is your idea to solve the problem. It is fine if some details have
not been figured out in the project proposal. But students should have rough ideas on how
to proceed.

First, explicitly state that which category the project is in: research-oriented, application-
oriented or implementation-oriented. Second, for research-oriented projects, describe the
proposed idea and the novelty of the idea. For application-oriented projects, describe which
approach is going to be used and how to apply this approach to a new application. For
implementation-oriented projects, describe which approach is going to be implemented and
the plan for the implementation.

• Data. Describe what dataset the project is going to use. Students can use existing datasets
for experiments, or collect your own datasets, or even test the method with real-time data
stream from a camera.

• Evaluation. Describe how to evaluate the success of the project. For example, what
evaluation metrics will be used to evaluate the performance of the method?

• References. Cite related works in the proposal.

3 Suggested Topics
Based on the materials we cover in the lectures, we suggest the follow topics for the course project.
However, the scope of the project is not limited to the mentioned topics below. Students can
explore other topics in computer vision as well. Also, the references in the suggested topics are
recent representative works. Students can explore methods beyond these references and propose
new ideas for different topics.

• Neural 3D Representations and Neural Rendering. Neural networks can be utilized
to learn 3D representations of objects or scenes and render these 3D representations into
images [26, 14, 38, 36, 54].

• Feature Detection and Matching. For this topic, students can explore methods for
detecting keypoint features [10], edges [63, 39], lines [65] or contours [48] as well matching
these features [45, 53].

• Stereo Depth Estimation. This topic is about using stereo images for depth estimation [29,
1, 28].

• Structure fromMotion (SfM) and SLAM. SfM and SLAM are very actively research areas
with large numbers of references [46, 2, 3].
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• 3D Object Reconstruction. This topic is about reconstructing a 3D model of an object
from a single image or multiple images [11, 15, 21, 30, 52].

• Optical Flow. This topic is about estimating the optical flow between two images [23, 40, 22].

• Object Detection. This topic is about detecting objects on images using bounding boxes [42,
41, 5].

• Semantic Segmentation. This topic is about labeling pixels in an image into semantic
classes [32, 37, 43, 51].

• Object Pose Estimation. This topic is about estimating the pose of objects from images or
videos [62, 56, 59, 8].

• Object Tracking. There are two types of object tracking problems: multi-object tracking [47,
35, 60] and tracking of a specific object in an input video [19, 27, 9].

• Camera Pose Estimation. This topic is about estimating the pose of cameras from im-
ages [34, 13, 18].

• Human and Hand Pose Estimation. This topic is about estimating the pose of humans
or hands in either 2D or 3D from images or videos [49, 55, 6, 4, 17, 58, 64].

• Human Activity Recognition. The topic is about recognizing human activities from
videos [24, 16, 12].

• Images and Languages. This topic is related to research on linking images and languages
such as object grounding [7, 44, 25, 31] and visual query answering [61, 50, 57].

• Visual Navigation. This topic is about mobile navigation using vision [20, 66, 33].

4 Deep Learning Resources
Most recent vision methods leverage deep learning to train neural networks to tackle various
problems in computer vision. If your project requires training of deep neural networks, you may
need to have GPUs for training. Google Colab is a great free resources for small amounts of GPU
resources: https://colab.research.google.com/. Two widely-used deep learning frameworks:

• PyTorch https://pytorch.org/

• TensorFlow https://www.tensorflow.org/
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