
CS 6384 Computer Vision Homework 5

Professor Yu Xiang

April 12, 2023

Download the homework5_programming.zip file from eLearning, Assignments, Homework 5.
Finish the following programming problems and submit your scripts to eLearning. You can zip all
the data and files for submission. Our TA will run your scripts to verify them.

Install the Python packages needed by

• pip install -r requirement.txt

Here are some useful resources:

• Python basics https://pythonbasics.org/

• Numpy https://numpy.org/doc/stable/user/basics.html

• OpenCV https://docs.opencv.org/4.x/d6/d00/tutorial_py_root.html

• PyTorch https://pytorch.org/tutorials/

In this homework, you will implement the YOLO object detector using PyTorch. The
code can run on a CPU machine, no GPU is needed.

The implementation is based on the following paper:

• You Only Look Once: Unified, Real-Time Object Detection. Joseph Redmon, Santosh Divvala,
Ross Girshick, Ali Farhadi. In CVPR, 2016. https://arxiv.org/abs/1506.02640.

Problem 1
(3 points) DataLoader in PyTorch for YOLO.

Dataset. We provide a dataset of a cracker box to train the YOLO detector. The images and
annotations are stored in yolo/data/. The input images are named as %06d.jpg. The ground truth
bounding box locations are stored in %06d-box.txt. The four numbers in a txt file indicate the
location of the cracker box in the corresponding image with the format (x1, y1, x2, y2), i.e., top-left
and bottom-right corners of the bounding box. The images with names %06d-gt.jpg are only for
visualization. We won’t use these images in training and testing. We split the images in this
dataset into 100 training images and 100 validation images.

1

https://pythonbasics.org/
https://numpy.org/doc/stable/user/basics.html
https://docs.opencv.org/4.x/d6/d00/tutorial_py_root.html
https://pytorch.org/tutorials/
https://arxiv.org/abs/1506.02640


Implement the __getitem__() function in yolo/data.py for the CrackerBox dataset class in PyTorch.
The __getitem__ function loads and returns a sample from the dataset at the given index idx.
Details about the dataset class in PyTorch can be found here: https://pytorch.org/tutorials/
beginner/basics/data_tutorial.html.

In our case, the __getitem__ function should return a Python dictionary with three items.

• sample[‘image’]: this should be a tensor in PyTorch with shape (3, 448, 448) to represent
the input image. The original image size in the dataset is 480x640. So you need to resize it
to 448x448. After resizing, we need to normalize the pixels by subtracting the pixel_mean
(defined in the CrackerBox class) and then dividing by 255. Finally, tenors in PyTorch are
stored with shape (channel, height, width). You need to swap the dimensions of the input
image.

• sample[‘gt_box’]: this should be a tensor in PyTorch with shape (5, 7, 7) to represent the
ground truth bounding box. In this YOLO implementation, an input with size 448x448 are
divided into 7x7 grids. If the center of the ground truth bounding box falls into a grid cell,
that grid cell is responsible for detecting the object.

In sample[‘gt_box’], each cell stores 5 values. They are (𝑐𝑥, 𝑐𝑦, 𝑤, ℎ, 𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒), where
(𝑐𝑥, 𝑐𝑦) are the center of the ground truth bounding box and (𝑤, ℎ) are the width and height
of the ground truth bounding. For ground truth bounding boxes, the confidence is defined
to be 1, i.e., 𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 = 1.

First of all, you can load the ground truth bounding boxes from the txt annotation files.
Note that they are in (x1, y1, x2, y2) format. Since we scaled the input image to 448x448,
you need to scale the bounding box as well. After that, we need to normalize (𝑐𝑥, 𝑐𝑦, 𝑤, ℎ)
to [0, 1]. To do so, for (𝑐𝑥, 𝑐𝑦), we compute its offset with respect to the top-left corner of
the grid cell, and then divide the offset by the size of the cell (64 pixels in our case). In this
way, the bounding box center can be normalized to [0, 1]. For width and height (𝑤, ℎ), we
divide them by the size of the input image (448 pixels). For cells without objects, we store 0s
in sample[‘gt_box’].

• sample[‘gt_mask’]: this should be a tensor in PyTorch with shape (7, 7) to represent the
location of the ground truth bounding in the grid. This tensor stores 0 and 1, where 1
indicates that the center of the ground truth bounding box falls into the corresponding cell.

After your implementation, run the yolo/data.py script in Python to verify it. The main function in
this script creates a dataloader of the cracker box dataset and then visualizes the samples generated
from the __getitem__ function. Figure 1 shows an example of running the script. Note that, each
call of the __getitem__ function returns one sample. But PyTorch dataloader automatically groups
multiple samples into a mini-batch by adding one more dimension to the tensors in the samples.
For example, the image tensor will have size (batch_size, 3, height, width) from the dataloader.

2

https://pytorch.org/tutorials/beginner/basics/data_tutorial.html
https://pytorch.org/tutorials/beginner/basics/data_tutorial.html


Figure 1: Visualization of data from the CrackerBox dataset class.

Problem 2
(3 points) Implement the YOLO network.

In this problem, you need to implement the YOLO network in yolo/model.py using the provided
layer functions from PyTorch. Table 1 describes the detailed network architecture of the YOLO
network. Follow this architecture and then implement the create_modules() function.

In this function, we first define the modules by modules = nn.Sequential(). Then you can use
modules.add_module() to add layers to the modules. Refer to the PyTorch tutorial on building
networks: https://pytorch.org/tutorials/beginner/basics/buildmodel_tutorial.html

After your implementation, run the yolo/model.py in Python to verify your network. Figure 2
shows a screenshot of running the script.

Figure 2: Screenshot of running of the yolo/model.py script.

3

https://pytorch.org/tutorials/beginner/basics/buildmodel_tutorial.html


Layers Dimensions (c, h, w) Parameters
Input 3 × 448 × 448
Conv1 16 × 448 × 448 kernel 3, stride 1, padding 1
ReLU1 16 × 448 × 448

MaxPool1 16 × 224 × 224 kernel 2, stride 2
Conv2 32 × 224 × 224 kernel 3, stride 1, padding 1
ReLU2 32 × 224 × 224

MaxPool2 32 × 112 × 112 kernel 2, stride 2
Conv3 64 × 112 × 112 kernel 3, stride 1, padding 1
ReLU3 64 × 112 × 112

MaxPool3 64 × 56 × 56 kernel 2, stride 2
Conv4 128 × 56 × 56 kernel 3, stride 1, padding 1
ReLU4 128 × 56 × 56

MaxPool4 128 × 28 × 28 kernel 2, stride 2
Conv5 256 × 28 × 28 kernel 3, stride 1, padding 1
ReLU5 256 × 28 × 28

MaxPool5 256 × 14 × 14 kernel 2, stride 2
Conv6 512 × 14 × 14 kernel 3, stride 1, padding 1
ReLU6 512 × 14 × 14

MaxPool6 512 × 7 × 7 kernel 2, stride 2
Conv7 1024 × 7 × 7 kernel 3, stride 1, padding 1
ReLU7 1024 × 7 × 7
Conv8 1024 × 7 × 7 kernel 3, stride 1, padding 1
ReLU8 1024 × 7 × 7
Conv9 1024 × 7 × 7 kernel 3, stride 1, padding 1
ReLU9 1024 × 7 × 7
Flatten 50176

FC1 256
FC2 256

FC Output 7 × 7 × (5𝐵 + 𝐶) 𝐵: #boxes per cell, 𝐶 : #classes
Sigmoid 7 × 7 × (5𝐵 + 𝐶)

Table 1: YOLO network architecture.

4



Problem 3
(4 points) Training and testing the YOLO network.

(3.1) Loss function. In order to train the YOLO network, we need to implement the loss function
first. Figure 3 shows the loss function defined in the YOLO paper. Finish the compute_loss()
function in yolo/loss.py to implement this loss function.

Figure 3: YOLO loss function.

0 20 40 60 80 100
Epoch

0

2

4

6

8

10

12
Loss

(a) Training losses for 100 epochs.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
recall

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

pr
ec

isi
on

AP: 0.34

(b) Precision-recall curve and Average Precision
on the validation set.

Figure 4: Training and testing of the YOLO network for object detection.

In YOLO, each grid cell predicts multiple bounding boxes. In our case, each cell predicts 2
bounding boxes. In this compute_loss() function, we first find out which predicted bounding box
is responsible for the ground truth bounding box. This is done by computing the Intersection over

5



Union (IoU) between the prediction and the ground truth. This assignment is stored in the box_-
mask tensor for future use, which corresponds to 1obj

𝑖𝑗 in the loss function in Figure 3. Meanwhile,
the IoUs are stored in the box_confidence tensor, which is treated as the target confidence scores
the YOLO network should predict, i.e., 𝐶𝑖 in the loss function.

(3.2) Training. After implementing the loss function, run the yolo/train.py script to train the
network. You can tune the hyper-parameters defined in the beginning of the main function in this
training script. Figure 4a shows the training loss over 100 epochs in our run. After training, the
weights of the network will be saved to yolo/checkpoints/yolo_final.checkpoint.pth. The plot of
the training losses will be saved to train_loss.pdf. You need to include this training loss plot in
your homework submission.

(3.2) Testing. Test your trained model by running the yolo/test.py script. This script will create
a dataloader for the validation set and run detection over all the validation images. In the end,
it will compute recall, precision and average precision (AP), and plot the PR-curve as shown in
Figure 4b. Include this plot in your submssion. You need to achieve at least 30% AP for your
trained model on the validation set, and the higher AP the better. You can tune these
hyper-parameters for training if needed. The test script also has a visualize() function to
show the detection on the validation images. You can use it to visualize the detection results.

6


	Problem 1
	Problem 2
	Problem 3

