
CS 6384 Computer Vision Homework 4 ∗

Professor Yu Xiang

March 30, 2023

Download the homework4_programming.zip file from eLearning, Assignments, Homework 4.
Finish the following programming problems and submit your scripts to eLearning. You can zip all
files for submission. Our TA will run your scripts to verify them. Do not include the CIFAR10
dataset in the submission.

Install the Python packages needed by

• pip install -r requirement.txt

Here are some useful resources:

• Python basics https://pythonbasics.org/

• Numpy https://numpy.org/doc/stable/user/basics.html

• OpenCV https://docs.opencv.org/4.x/d6/d00/tutorial_py_root.html

For this homework, you cannot use any deep learning libraries such as PyTorch or
TensorFlow.

When using back-propagation to train neural networks, we compute local gradients of each layer
and combine them to learn the weights in the neural networks. Fig. 1 illustrates this process. In
this example, we have a layer that takes a matrix (tensor) 𝑥 with dimension 𝐷𝑥 ×𝑀𝑥 and a matrix
(tensor) 𝑦 with dimension 𝐷𝑦 ×𝑀𝑦 as input. The output of this layer is 𝑧 with dimension 𝐷𝑧 ×𝑀𝑧 .

In the forward function, this layer computes the output 𝑧 given 𝑥 and 𝑦 . It can also output a cache
object that contains all the values needed during back-propagation.

In the backward function, this layer receives the upstream gradients and the cache object, and
compute the downstream gradients. In this example, the upstream gradients is 𝜕𝐿

𝜕𝑧 , where 𝐿 denotes
the final loss function of the network. Note that the loss function outputs a scalar. Therefore, 𝜕𝐿

𝜕𝑧
is with dimension 𝐷𝑧 ×𝑀𝑧 that is the same as 𝑧. We use chain rule to compute the downstream
gradients

𝜕𝐿
𝜕𝑥

=
𝜕𝐿
𝜕𝑧

𝜕𝑧
𝜕𝑥

,
𝜕𝐿
𝜕𝑦

=
𝜕𝐿
𝜕𝑧

𝜕𝑧
𝜕𝑦

,

∗This homework is adapted from Dr. Justin Johnson at the University of Michigan

1

https://pythonbasics.org/
https://numpy.org/doc/stable/user/basics.html
https://docs.opencv.org/4.x/d6/d00/tutorial_py_root.html

Layer
Upstream gradient

Local gradient

Jacobian matrix

Local gradient

Jacobian matrix
Downstream gradient

Figure 1: Back-propagation of gradients.

where 𝜕𝑧
𝜕𝑥 and 𝜕𝑧

𝜕𝑦 are the local gradients in this layer. They are the Jacobian matrices:

(
𝜕𝑧
𝜕𝑥

)𝑖𝑗 =
𝜕𝑧𝑖
𝜕𝑥𝑗

, (
𝜕𝑧
𝜕𝑦

)𝑖𝑗 =
𝜕𝑧𝑖
𝜕𝑦𝑗

.

We can consider 𝜕𝑧
𝜕𝑥 as a matrix with dimension (𝐷𝑧 ×𝑀𝑧)×(𝐷𝑥 ×𝑀𝑥). Then we can do a matrix-vector

multiplication to compute 𝜕𝐿
𝜕𝑥 = 𝜕𝐿

𝜕𝑧
𝜕𝑧
𝜕𝑥 , which have the same dimension as 𝑥 . Similarly, we can

compute 𝜕𝐿
𝜕𝑦 = 𝜕𝐿

𝜕𝑧
𝜕𝑧
𝜕𝑦 .

Problem 1
(4 points) Back-propagation.

In this question, you need to implement the fully-connected layer, the ReLU layer, the softmax
loss function and the L2 regularization loss function in neuralnet/layers.py.

After your implementation, you need to use the script neuralnet/gradcheck layers.py to perform
numeric gradient checking on your implementations. Given a function 𝑓 ∶ → , we can
approximate the gradient of 𝑓 at a point 𝑥0 ∈ using central difference:

𝜕𝑓
𝜕𝑥

(𝑥0) =
𝑓 (𝑥0 + ℎ) − 𝑓 (𝑥0 − ℎ)

2ℎ
. (1.1)

The difference between all numeric and analytic gradients should be less than 10−9. Keep in mind
that numeric gradient checking does not check whether you have correctly implemented the
forward pass. It only checks whether the backward pass you have implemented actually computes
the gradient of the forward pass that you implemented.

(1.1) Fully connected layer. Implement the fc_forward() function and the fc_backward() function
in neuralnet/layers.py after reading the following derivation.

2

The input to a FC layer is a tensor 𝑥 with shape (𝑁 , 𝐷𝑥), where 𝑁 is the batch size and 𝐷𝑥 is the
dimension of the feature. The weight matrix 𝑊 in the FC layer is with shape (𝐷𝑥 , 𝐷𝑤) and the
bias 𝑏 of the FC layer is a vector with dimension 𝐷𝑤 . The output of the FC layer is a tensor 𝑦 with
shape (𝑁 , 𝐷𝑤). The 𝑖the row of the 𝑦 matrix is computed by

𝑦𝑖 = 𝑥𝑖𝑊 + 𝑏, (1.2)

where 𝑦𝑖 and 𝑥𝑖 are the 𝑖th row of 𝑦 and 𝑥 , respectively, i.e., the 𝑖th data point in the batch. With
all the data points, we have

⎡
⎢
⎢
⎢
⎣

𝑦1,1 𝑦1,2 ⋯ 𝑦1,𝐷𝑤

𝑦2,1 𝑦2,2 ⋯ 𝑦2,𝐷𝑤

⋮ ⋮ ⋮ ⋮
𝑦𝑁 ,1 𝑦𝑁 ,2 ⋯ 𝑦𝑁 ,𝐷𝑤

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑥1,1 𝑥1,2 ⋯ 𝑥1,𝐷𝑥

𝑥2,1 𝑥2,2 ⋯ 𝑥2,𝐷𝑥

⋮ ⋮ ⋮ ⋮
𝑥𝑁 ,1 𝑥𝑁 ,2 ⋯ 𝑥𝑁 ,𝐷𝑥

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝑤1,1 𝑤1,2 ⋯ 𝑤1,𝐷𝑤

𝑤2,1 𝑤2,2 ⋯ 𝑤2,𝐷𝑤

⋮ ⋮ ⋮ ⋮
𝑤𝐷𝑥 ,1 𝑤𝐷𝑥 ,2 ⋯ 𝑤𝐷𝑥 ,𝐷𝑤

⎤
⎥
⎥
⎥
⎦

+
⎡
⎢
⎢
⎢
⎣

𝑏1 𝑏2 ⋯ 𝑏𝐷𝑤

𝑏1 𝑏2 ⋯ 𝑏𝐷𝑤

⋮ ⋮ ⋮ ⋮
𝑏1 𝑏2 ⋯ 𝑏𝐷𝑤

⎤
⎥
⎥
⎥
⎦

.

(1.3)

In the backward function of the FC layer, we receive upstream gradients 𝜕𝐿
𝜕𝑦 with shape (𝑁 , 𝐷𝑤).

We need to compute the downstream gradients 𝜕𝐿
𝜕𝑥 , 𝜕𝐿

𝜕𝑊 and 𝜕𝐿
𝜕𝑏 . To do so, let’s first consider

𝜕𝐿
𝜕𝑥

=
𝑁

∑
𝑖=1

𝐷𝑤

∑
𝑗=1

𝜕𝐿
𝜕𝑦𝑖,𝑗

⋅
𝜕𝑦𝑖,𝑗
𝜕𝑥

(1.4)

=
𝑁

∑
𝑖=1

𝐷𝑤

∑
𝑗=1

𝜕𝐿
𝜕𝑦𝑖,𝑗

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮

𝑤1,𝑗 𝑤2,𝑗 ⋯ 𝑤𝐷𝑥 ,𝑗
⋮ ⋮ ⋮ ⋮
0 0 ⋯ 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(the ith row) (1.5)

=
𝐷𝑤

∑
𝑗=1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜕𝐿
𝜕𝑦1,𝑗

𝑤1,𝑗
𝜕𝐿
𝜕𝑦1,𝑗

𝑤2,𝑗 ⋯ 𝜕𝐿
𝜕𝑦1,𝑗

𝑤𝐷𝑥 ,𝑗

⋮ ⋮ ⋮ ⋮
𝜕𝐿
𝜕𝑦𝑖,𝑗

𝑤1,𝑗
𝜕𝐿
𝜕𝑦𝑖,𝑗

𝑤2,𝑗 ⋯ 𝜕𝐿
𝜕𝑦𝑖,𝑗

𝑤𝐷𝑥 ,𝑗

⋮ ⋮ ⋮ ⋮
𝜕𝐿

𝜕𝑦𝑁 ,𝑗
𝑤1,𝑗

𝜕𝐿
𝜕𝑦𝑁 ,𝑗

𝑤2,𝑗 ⋯ 𝜕𝐿
𝜕𝑦𝑁 ,𝑗

𝑤𝐷𝑥 ,𝑗

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(1.6)

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑𝐷𝑤
𝑗=1

𝜕𝐿
𝜕𝑦1,𝑗

𝑤1,𝑗 ∑𝐷𝑤
𝑗=1

𝜕𝐿
𝜕𝑦1,𝑗

𝑤2,𝑗 ⋯ 𝜕𝐿
𝜕𝑦1,𝑗

𝑤𝐷𝑥 ,𝑗

⋮ ⋮ ⋮ ⋮
∑𝐷𝑤

𝑗=1
𝜕𝐿
𝜕𝑦𝑖,𝑗

𝑤1,𝑗 ∑𝐷𝑤
𝑗=1

𝜕𝐿
𝜕𝑦𝑖,𝑗

𝑤2,𝑗 ⋯ ∑𝐷𝑤
𝑗=1

𝜕𝐿
𝜕𝑦𝑖,𝑗

𝑤𝐷𝑥 ,𝑗

⋮ ⋮ ⋮ ⋮
∑𝐷𝑤

𝑗=1
𝜕𝐿

𝜕𝑦𝑁 ,𝑗
𝑤1,𝑗 ∑𝐷𝑤

𝑗=1
𝜕𝐿

𝜕𝑦𝑁 ,𝑗
𝑤2,𝑗 ⋯ ∑𝐷𝑤

𝑗=1
𝜕𝐿

𝜕𝑦𝑁 ,𝑗
𝑤𝐷𝑥 ,𝑗

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1.7)

=
𝜕𝐿
𝜕𝑦

𝑊 𝑇 . (1.8)

We have a compact formula to compute the downstream gradients of 𝑥 as

𝜕𝐿
𝜕𝑥

=
𝜕𝐿
𝜕𝑦

𝑊 𝑇 . (1.9)

3

Similarly, we have

𝜕𝐿
𝜕𝑊

=
𝑁

∑
𝑖=1

𝐷𝑤

∑
𝑗=1

𝜕𝐿
𝜕𝑦𝑖,𝑗

⋅
𝜕𝑦𝑖,𝑗
𝜕𝑊

(1.10)

=
𝑁

∑
𝑖=1

𝐷𝑤

∑
𝑗=1

𝜕𝐿
𝜕𝑦𝑖,𝑗

⎡
⎢
⎢
⎢
⎣

0 ⋯ 𝑥𝑖,1 ⋯ 0
0 ⋯ 𝑥𝑖,2 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 𝑥𝑖,𝐷𝑥 ⋯ 0

⎤
⎥
⎥
⎥
⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
the jth column

(1.11)

=
𝑁

∑
𝑖=1

⎡
⎢
⎢
⎢
⎢
⎣

𝜕𝐿
𝜕𝑦𝑖,1

𝑥𝑖,1 ⋯ 𝜕𝐿
𝜕𝑦𝑖,𝑗

𝑥𝑖,1 ⋯ 𝜕𝐿
𝜕𝑦𝑖,𝐷𝑤

𝑥𝑖,1
𝜕𝐿
𝜕𝑦𝑖,1

𝑥𝑖,2 ⋯ 𝜕𝐿
𝜕𝑦𝑖,𝑗

𝑥𝑖,2 ⋯ 𝜕𝐿
𝜕𝑦𝑖,𝐷𝑤

𝑥𝑖,2
⋮ ⋮ ⋮ ⋮ ⋮

𝜕𝐿
𝜕𝑦𝑖,1

𝑥𝑖,𝐷𝑥 ⋯ 𝜕𝐿
𝜕𝑦𝑖,𝑗

𝑥𝑖,𝐷𝑥 ⋯ 𝜕𝐿
𝜕𝑦𝑖,𝐷𝑤

𝑥𝑖,𝐷𝑥

⎤
⎥
⎥
⎥
⎥
⎦

(1.12)

=

⎡
⎢
⎢
⎢
⎢
⎣

∑𝑁
𝑖=1

𝜕𝐿
𝜕𝑦𝑖,1

𝑥𝑖,1 ⋯ ∑𝑁
𝑖=1

𝜕𝐿
𝜕𝑦𝑖,𝑗

𝑥𝑖,1 ⋯ ∑𝑁
𝑖=1

𝜕𝐿
𝜕𝑦𝑖,𝐷𝑤

𝑥𝑖,1
∑𝑁

𝑖=1
𝜕𝐿
𝜕𝑦𝑖,1

𝑥𝑖,2 ⋯ ∑𝑁
𝑖=1

𝜕𝐿
𝜕𝑦𝑖,𝑗

𝑥𝑖,2 ⋯ ∑𝑁
𝑖=1

𝜕𝐿
𝜕𝑦𝑖,𝐷𝑤

𝑥𝑖,2
⋮ ⋮ ⋮ ⋮ ⋮

∑𝑁
𝑖=1

𝜕𝐿
𝜕𝑦𝑖,1

𝑥𝑖,𝐷𝑥 ⋯ ∑𝑁
𝑖=1

𝜕𝐿
𝜕𝑦𝑖,𝑗

𝑥𝑖,𝐷𝑥 ⋯ ∑𝑁
𝑖=1

𝜕𝐿
𝜕𝑦𝑖,𝐷𝑤

𝑥𝑖,𝐷𝑥

⎤
⎥
⎥
⎥
⎥
⎦

(1.13)

= 𝑥𝑇 𝜕𝐿
𝜕𝑦

. (1.14)

Therefore,
𝜕𝐿
𝜕𝑊

= 𝑥𝑇 𝜕𝐿
𝜕𝑦

. (1.15)

Lastly, we compute

𝜕𝐿
𝜕𝑏

=
𝑁

∑
𝑖=1

𝐷𝑤

∑
𝑗=1

𝜕𝐿
𝜕𝑦𝑖,𝑗

⋅
𝜕𝑦𝑖,𝑗
𝜕𝑏

(1.16)

=
𝑁

∑
𝑖=1

𝐷𝑤

∑
𝑗=1

𝜕𝐿
𝜕𝑦𝑖,𝑗

[0 ⋯ 1 ⋯ 0]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

the jth column

(1.17)

=
𝑁

∑
𝑖=1

[
𝜕𝐿
𝜕𝑦𝑖,1

⋯ 𝜕𝐿
𝜕𝑦𝑖,𝑗

⋯ 𝜕𝐿
𝜕𝑦𝑖,𝐷𝑤] (1.18)

= [∑
𝑁
𝑖=1

𝜕𝐿
𝜕𝑦𝑖,1

⋯ ∑𝑁
𝑖=1

𝜕𝐿
𝜕𝑦𝑖,𝑗

⋯ ∑𝑁
𝑖=1

𝜕𝐿
𝜕𝑦𝑖,𝐷𝑤] (1.19)

= 𝟏𝑇
𝜕𝐿
𝜕𝑦

. (1.20)

That is
𝜕𝐿
𝜕𝑏

= 𝟏𝑇
𝜕𝐿
𝜕𝑦

, (1.21)

where 𝟏 denotes a column vector with all 1s.

4

(1.2) ReLU layer. Implement the relu_forward() function and the relu_backward() function in
neuralnet/layers.py. The ReLU activation function is defined as

ReLU(𝑥) = max(0, 𝑥) (1.22)

=

{
𝑥, if 𝑥 ≥ 0
0, otherwise,

(1.23)

for each element in a tensor.

(1.3) Softmax Loss Function. Implement the softmax_loss() function in neuralnet/layers.py after
reading the following material.

The input to a softmax loss function layer is a tensor 𝑥 with shape (𝑁 , 𝐶), where 𝑁 is the batch
size and 𝐶 is the number of categories to be classified. The softmax loss function first converts the
scores 𝑥 into a set of 𝑁 probability distributions over the categories, defined as:

𝑝𝑖,𝑐 =
exp(𝑥𝑖,𝑐)

∑𝐶
𝑗=1 exp(𝑥𝑖,𝑗)

, 𝑖 = 1, 2,… , 𝑁 , 𝑐 = 1, 2,… , 𝐶. (1.24)

Then the softmax loss function is defined as

𝐿 = −
1
𝑁

𝑁

∑
𝑖=1

log(𝑝𝑖,𝑦𝑖), (1.25)

where 𝑦𝑖 ∈ {1, 2,… , 𝐶} is the ground truth label for the 𝑖th data point.

A naive implementation of the softmax loss function can result in numeric instability when the
value of some 𝑥𝑖,𝑐 in Eq. (1.24) is large. Then it can cause overflow with exp(𝑥𝑖,𝑐). To avoid this, we
can compute the probabilities by

𝑝𝑖,𝑐 =
exp(𝑧𝑖,𝑐)

∑𝐶
𝑗=1 exp(𝑧𝑖,𝑗)

=
exp(𝑥𝑖,𝑐 −𝑀𝑖)

∑𝐶
𝑗=1 exp(𝑥𝑖,𝑗 −𝑀𝑖)

, 𝑖 = 1, 2,… , 𝑁 , 𝑐 = 1, 2,… , 𝐶, (1.26)

where 𝑀𝑖 = max𝑐 𝑥𝑖,𝑐 , i.e., the maximum score for data point 𝑖 among the categories, and 𝑧𝑖,𝑐 =
𝑥𝑖,𝑐 −𝑀𝑖 . By doing so, we can avoid overflow with the exponential. It is not hard to see that

𝑝𝑖,𝑐 =
exp(𝑥𝑖,𝑐 −𝑀𝑖)

∑𝐶
𝑗=1 exp(𝑥𝑖,𝑗 −𝑀𝑖)

=
exp(𝑥𝑖,𝑐) exp(−𝑀𝑖)

∑𝐶
𝑗=1 exp(𝑥𝑖,𝑗) exp(−𝑀𝑖)

=
exp(𝑥𝑖,𝑐)

∑𝐶
𝑗=1 exp(𝑥𝑖,𝑗)

. (1.27)

Your softmax implementation should use this max-subtraction trick for numeric stability. You can
run the script neuralnet/check softmax stability.py to check the numeric stability of your softmax
loss implementation.

In the backward function of the softmax loss function, we need to compute the downstream
gradients 𝜕𝐿

𝜕𝑥 with shape (𝑁 , 𝐶). First, we compute the gradients of 𝐿 with respect to 𝑝𝑖,𝑦𝑖 in
Eq. (1.25) as

𝜕𝐿
𝜕𝑝𝑖,𝑦𝑖

= −
1

𝑁𝑝𝑖,𝑦𝑖
. (1.28)

5

Note that
𝜕𝐿
𝜕𝑝𝑖,𝑐

= 0, ∀𝑐 ≠ 𝑦𝑖 . (1.29)

Next, we compute

𝜕𝐿
𝜕𝑧𝑖,𝑐

=
𝑁

∑
𝑖′=1

𝐶

∑
𝑐′=1

𝜕𝐿
𝜕𝑝𝑖′,𝑐′

⋅
𝜕𝑝𝑖′,𝑐′
𝜕𝑧𝑖,𝑐

=
𝐶

∑
𝑐′=1

𝜕𝐿
𝜕𝑝𝑖,𝑐′

⋅
𝜕𝑝𝑖,𝑐′
𝜕𝑧𝑖,𝑐

=
𝜕𝐿
𝜕𝑝𝑖,𝑦𝑖

⋅
𝜕𝑝𝑖,𝑦𝑖
𝜕𝑧𝑖,𝑐

. (1.30)

From the lecture, we know that
𝜕𝑝𝑖,𝑦𝑖
𝜕𝑧𝑖,𝑐

= 𝑝𝑖,𝑦𝑖 (𝛿𝑦𝑖 ,𝑐 − 𝑝𝑖,𝑐), (1.31)

where

𝛿𝑦𝑖 ,𝑐 =

{
1, if 𝑐 = 𝑦𝑖
0, otherwise.

(1.32)

By substituting Eq. (1.28) and Eq. (1.31) into Eq. (1.30), we have

𝜕𝐿
𝜕𝑧𝑖,𝑐

= −
1

𝑁𝑝𝑖,𝑦𝑖
⋅ 𝑝𝑖,𝑦𝑖 (𝛿𝑦𝑖 ,𝑐 − 𝑝𝑖,𝑐) (1.33)

=
𝑝𝑖,𝑐 − 𝛿𝑦𝑖 ,𝑐

𝑁
(1.34)

Lastly, we have 𝑧𝑖,𝑐 = 𝑥𝑖,𝑐 − 𝑀𝑖 . It can be shown that this max-subtraction does not change the
downstream gradients. Therefore, we have

𝜕𝐿
𝜕𝑥𝑖,𝑐

=
𝜕𝐿
𝜕𝑧𝑖,𝑐

=
𝑝𝑖,𝑐 − 𝛿𝑦𝑖 ,𝑐

𝑁
. (1.35)

(1.4) L2 regularization. Implement the l2_regularization() function in neuralnet/layers.py after
reading the following material.

L2 regularization implements the L2 regularization loss on the parameters in the network:

𝐿(𝑊) =
𝜆
2
‖𝑊 ‖2 =

𝜆
2
∑
𝑖
𝑊 2

𝑖 , (1.36)

where the sum ranges over all scalar elements of the weight matrix W and 𝜆 is a hyperparameter
controlling the regularization strength. The downstream gradients of this loss function is

𝜕𝐿
𝜕𝑊𝑖

= 𝜆𝑊𝑖 , (1.37)

for each element in 𝑊 .

6

Problem 2
(3 points) Implement a Two-Layer Network.

In this problem, you need to implement a two-layer network using the layers from problem 1.
This network has two FC layers with one ReLU activation layer: input -> FC layer -> ReLU layer
-> FC layer -> scores.

Complete the implementation of the TwoLayerNet class in neuralnet/two_layer_net.py.

First, you can see that the TwoLayerNet class is a subclass of the Classifer class defined in
neuralnet/classifier.py. The Classifier class is a base class for image classification models. You
do not need to implement anything in this class, but you should read through it to familiarize
yourself with the API.

Second, in the neuralnet/linear_classifier.py script, a LinearClassifer class is implemented. You
can study this implementation to see how these layers are used.

Finally, you can implement the TwoLayerNet class in neuralnet/two_layer_net.py. Your imple-
mentations for the forward and backward methods should use the modular forward and backward
functions in these layers that you implemented in Problem 1.

After completing your implementation, you can run the script neuralnet/gradcheck_classifier.py to
perform numeric gradient checking on both the linear classifier as well as the two-layer network
you implemented. You should see errors less than 10−10 for the gradients of all parameters.

7

Problem 3
(3 points) Training a Two-Layer Network.

In this problem, you need to train your implemented two-layer network on the CIFAR-10 dataset
for image classification. This dataset consists of 32 × 32 RGB images of 10 different categories. It
provides 50,000 training images and 10,000 test images. Figure 2 shows a few example images
from the dataset.

Figure 2: Example images for the CIFAR-10 dataset.

First, You need to use the script nerualnet/download_cifar.sh to download and unpack the CIFAR10
dataset. After downloading the dataset, implement the training_step() function in train.py.

The main function in train.py first set a few hyperparameters. Then it set up data samplers for the
training set and the validation set of the CIFRA10 dataset. After initializing the two-layer network
and the optimizer using stochastic gradient descent, it implements a training loop for training.

In this training loop, the training_step() function is called for each mini-batch. This function
inputs the model, a minibatch of data, and the regularization strength. It computes a forward
and backward pass through the model and returns both the loss and the gradient of the loss with
respect to the model parameters. The loss should be the sum of two terms:

• A data loss term, which is the softmax loss between the model’s predicted scores and the
ground-truth image labels.

• A regularization loss term, which penalizes the L2 norm of the weight matrices of all the
fully-connected layers of the model. You should not apply L2 regularization to the biases.

Figure 4 shows an examples for linear regression with a L2 loss. You can follow this example
to compute the loss for the two-layer network and the gradients of the loss with respect to the
parameters of the network in the training_step() function.

After your implementation, it is time to train the network. Run the script neuralnet/train.py to
train a two-layer network on the CIFAR10 dataset. The script will print out training losses and

8

Figure 3: Linear regression with a L2 loss function.

train and val set accuracy as it trains. After training concludes, the script will also make a plot
of the training losses as well as the training and validation-set accuracy of the model during
training. By default this will be saved in a file plot.pdf, but this can be customized with the flag
− − 𝑝𝑙𝑜𝑡 − 𝑓 𝑖𝑙𝑒. You should see a plot that looks like this:

0 2 4 6 8 10
Epoch

2.321

2.322

2.323

2.324

2.325

2.326

2.327

Loss

0 2 4 6 8 10
Epoch

10.1

10.2

10.3

10.4

10.5

10.6

10.7

Accuracy
train
val

Figure 4: Trainng loss and train-validation accuracy.

Unfortunately, it seems that your model is not training very effectively – the training loss has not
decreased much from its initial value of 2.3, and the training and validation accuracies are very
close to 10% which is what we would expect from a model that randomly guesses a category label
for each input.

You will need to tune the hyperparameters of your model in order to improve it. Try changing the
hyperparameters of the model in the provided space of the main function of neuralnet/train.py.
You can consider changing any of the following hyperparameters:

• num_train: The number of images to use for training

• hidden_dim: The width of the hidden layer of the model

• batch_size: The number of examples to use in each minibatch during SGD

• num_epochs: How long to train. An epoch is a single pass through the training set.

• learning_rate: The learning rate to use for SGD

9

• reg: The strength of the L2 regularization term

You should tune the hyperparameters and train a model that achieves at least 40% on the
validation set. In your homework submission, include the loss / accuracy plot for your
best model. After tuning your model, run your best model exactly once on the test set using the
script neuralnet/test.py.

You may not need to change all of the hyperparameters. Some are fine at their default values. Your
model should not take an excessive amount of time to train. For reference, our hyperparameter
settings achieve 42% accuracy on the validation set in less than 1 minute of training on a desktop
with an Intel i9 CPU.

10

	Problem 1
	Problem 2
	Problem 3

