Neural Networks for 3D Data

CS 6384 Computer Vision Professor Yu Xiang The University of Texas at Dallas

EST

NIV

Neural Networks for Images and Languages

• Image recognition

English

• Natural Language Understanding

Google Translation UT Dallas is a rising public research university in the heart of DFW. ✓ French
 ✓ UT Dallas est une université de recherche publique en plein essor au cœur de DFW.

ImageNet classification

3D Data

Can we use neural networks for these 3D data?

3D Meshes

3D points

3D Voxels

3D Voxels

- Add an additional dimension to images
 - Images [height, width, 3]
 - Voxels [height, width, length, 3] (the last dimension can change depending on what data to store)
- Use 3D convolutions

VoxNet

- Input: Volumetric occupancy grid
 - Each voxel stores the probability of that voxel is occupied
- 3D convolution layer

VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition. Maturana & Scherer, IROS'15

3D Points

- 3D convolution is expensive
- 3D points $\,N imes 3\,$
 - A set, irregular format
 - Cannot directly apply 2D convolution or 3D convolution
 - Invariant to permutation and rigid transformation

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. Qi et al., CVPR'17.

Yu Xiang

- Design principle
 - Invariant to permutation and rigid transformation
 - Per-point feature extraction and max-pooling

Yu Xiang

• Point-wise labeling

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. Qi et al., CVPR'17

9

	input	#views	accuracy	accuracy
			avg. class	overall
SPH [11]	mesh	-	68.2	-
3DShapeNets [28]	volume	1	77.3	84.7
VoxNet [17]	volume	12	83.0	85.9
Subvolume [18]	volume	20	86.0	89.2
LFD [28]	image	10	75.5	-
MVCNN [23]	image	80	90.1	-
Ours baseline	point	-	72.6	77.4
Ours PointNet	point	1	86.2	89.2

Table 1. Classification results on ModelNet40. Our net achievesstate-of-the-art among deep nets on 3D input.

3D Shape Classification

Part segmentation

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. Qi et al., CVPR'17

- PointNet cannot capture local structures of the point clouds
 - Per-point feature extraction and max-pooling
- PointNet++
 - A hierarchical neural network on 3D points
 - Use PointNet as a building block, extract features in a hierarchical way

MIK drC (N,d+C) sampling & sampling & pointnet pointnet grouping grouping set abstraction set abstraction

Hierarchical point set feature learning

- Set abstraction levels (3 levels used)
 - Sampling layer (farthest point sampling), sample N' points (centroids)
 - Grouping layer, find K nearest neighbors for each centroid
 - Ball query
 - KNN
 - PointNet layer, extract a feature vector with dimension C' for each centroid and its neighbors

Hierarchical point set feature learning

Point Feature Propagation for Set Segmentation

Method	Input	Accuracy (%)
Subvolume [21]	vox	89.2
MVCNN [26]	img	90.1
PointNet (vanilla) [20]	pc	87.2
PointNet [20]	pc	89.2
Ours	pc	90.7
Ours (with normal)	pc	91.9

 Table 2: ModelNet40 shape classification.

3D Shape Classification

Implicit Representations of 3D Data

• Explicit shape representations

3D points

3D Voxels

3D Meshes

- Implicit shape representations
 - Use a function to encode the 3D shape
 - Example: Signed Distance Fields (SDFs)

Signed Distance Fields for Rigid and Deformable 3D Reconstruction. Miroslava Slavcheva.

Occupancy Network for 3D Reconstruction

Occupancy function

• Training a neural network to learn the following function

Occupancy Networks: Learning 3D Reconstruction in Function Space. Mescheder et al., CVPR'19

Occupancy Network for 3D Reconstruction

• Training

Occupancy Networks: Learning 3D Reconstruction in Function Space. Mescheder et al., CVPR'19

Occupancy Network for 3D Reconstruction

Single image 3D reconstruction

Occupancy Networks: Learning 3D Reconstruction in Function Space. Mescheder et al., CVPR'19

DeepSDF

Signed distance function

$$SDF(\boldsymbol{x}) = s : \boldsymbol{x} \in \mathbb{R}^3, \, s \in \mathbb{R}$$

- Train a neural network to predict SDFs $f_{\theta}({\bm x}) \approx SDF({\bm x}), \, \forall {\bm x} \in \Omega$
- Loss function

- 8 FC layers with dropout
- 512-d FC layer with ReLU
- Output with tanh

$$\mathcal{L}(f_{\theta}(\boldsymbol{x}), s) = |\operatorname{clamp}(f_{\theta}(\boldsymbol{x}), \delta) - \operatorname{clamp}(s, \delta)|$$

 $\operatorname{clamp}(x,\delta) := \min(\delta, \max(-\delta, x))$

distance from the surface over which we expect to maintain a metric SDF

DeepSDF

• Learning the latent space of shapes

(a) Single Shape DeepSDF

 $f_{\theta}(\boldsymbol{x}) \approx SDF(\boldsymbol{x}), \, \forall \boldsymbol{x} \in \Omega$

(b) Coded Shape DeepSDF

$$f_{\theta}(\boldsymbol{z}_{i}, \boldsymbol{x}) \approx SDF^{i}(\boldsymbol{x})$$

Code for shape i

DeepSDF

Auto-decoder

• Training objective

Shape completion from partial point clouds

Figure 1: DeepSDF represents signed distance functions (SDFs) of shapes via latent code-conditioned feed-forward decoder networks. Above images are raycast renderings of DeepSDF interpolating between two shapes in the learned shape latent space. Best viewed digitally.

Neural Radiance Fields (NeRF)

- Represent 3D scenes with color information (geometry + appearance)
- Learning a 5D vector-valued function

Neural Radiance Fields (NeRF)

• Volumetric rendering

Ray
$$\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$$

Color of the ray
$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t)\sigma(\mathbf{r}(t))\mathbf{c}(\mathbf{r}(t), \mathbf{d})dt$$

Density Color

Probability that the ray travels from tn to t without hitting any other particle

$T(t) = \exp\left(-\int_{t_n}^t \sigma(\mathbf{r}(s))ds\right)$

) dt Vo Ren

5D Input

Position + Direction

 x, y, z, θ, ϕ

 \rightarrow (RGB σ)

Θ

K

Ray 2

1000

Output

Color + Density

Ray

Rending: find C(r) for a camera ray traced through each pixel

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Mildenhall et al., ECCV'20

Neural Radiance Fields (NeRF)

View Synthesis

https://www.matthewtancik.com/nerf

Yu Xiang

Summary

- Neural networks can be applied to 3D data
 - Shape recognition, shape reconstruction
 - Point cloud segmentation
 - View synthesis
 - Etc.
- Explicit 3D representations
 - Voxels, points, meshes
- Implicit 3D representations
 - Learn a function to represent the 3D shape (occupancy, SDFs, radiance fields)

Further Reading

VoxNet

https://www.ri.cmu.edu/pub_files/2015/9/voxnet_maturana_scherer_ iros15.pdf

- PointNet https://arxiv.org/abs/1612.00593
- PointNet++ <u>https://arxiv.org/pdf/1706.02413.pdf</u>
- Occupancy Network https://arxiv.org/abs/1812.03828
- DeepSDF <u>https://arxiv.org/abs/1901.05103</u>
- NeRF <u>https://arxiv.org/abs/2003.08934</u>
- NeRF Explosion 2020 <u>https://dellaert.github.io/NeRF/</u>