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Neural Networks for Images and Languages

* Image recognition

* Natural Language Understanding

English
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ImageNet classification




3D Data

Can we use neural networks for these 3D data?
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3D Voxels

3D points




3D Voxels

* Add an additional dimension to images

* Images [height, width, 3]

* Voxels [height, width, length, 3] (the last dimension

can change depending on what data to store)

e Use 3D convolutions



VoxNet

* Input: Volumetric
occupancy grid

e Each voxel stores the
probability of that voxel is
occupied

* 3D convolution layer
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VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition. Maturana & Scherer, IROS’15




3D Points

* 3D convolution is expensive

* 3D points N x 3

. Rt 3
* Aset, irregular format 3*;2”*
Z N ey,
* Cannot directly apply 2D convolution or 3D convolution

* |Invariant to permutation and rigid transformation




PointNet

PointNet

TN

-z table?
y7

car?

"

Classification Part Segmentation  Semantic Segmentation

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. Qi et al., CVPR’17.




PointNet

* Design principle
* |nvariant to permutation and rigid transformation
* Per-point feature extraction and max-pooling
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PointNet

* Point-wise labeling

Classification Network
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PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. Qi et al., CVPR’17




PointNet

input | #views | accuracy | accuracy "ﬂ"'
avg. class | overall i
SPH [11] mesh - 68.2 - }

3DShapeNets [25] | volume | 1 77.3 84.7 d TR
VoxNet [ | 7] volume 12 83.0 85.9 o -.\‘ ,..
Subvolume [ ] volume 20 86.0 89.2 e guitar

LFD [28] image 10 75.5 -
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Table 1. Classification results on ModelNet40. Our net achieves Partial Tnputs . Complete Inputs

state-of-the-art among deep nets on 3D input.

3D Shape Classification Part segmentation

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. Qi et al., CVPR’17




PointNet++

* PointNet cannot capture local structures of the point clouds
* Per-point feature extraction and max-pooling

* PointNet++
* A hierarchical neural network on 3D points

* Use PointNet as a building block, extract features in a hierarchical way

PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. Qi et al., NuerIPS’17




PointNet++

Hierarchical point set feature learning

—> B — Ny —  —>

samplir_lg & pointnet samplir_lg & pointnet
grouping grouping
\ U\ J
Y Y
set abstraction set abstraction

» Set abstraction levels (3 levels used)
* Sampling layer (farthest point
sampling), sample N’ points (centroids)

* Grouping layer, find K nearest
neighbors for each centroid
e Ball query
 KNN

* PointNet layer, extract a feature vector
with dimension C’ for each centroid
and its neighbors

PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. Qi et al., NuerIPS’17




PointNet++

Hierarchical point set feature learning

Classification
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PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. Qi et al., NuerIPS’17




PointNet++

Point Feature Propagation for Set Segmentation

skip link concatenation

Hierarchical point set feature learmng Segmentation
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PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. Qi et al., NuerIPS’17




PointNet++

Ground Truth
e,
Method Input  Accuracy (%)
Subvolume [21] VOX 89.2
MVCNN [26] img 90.1
PointNet (vanilla) [20] pc 87.2
PointNet [20] pc 89.2
Ours pc 90.7
Ours (with normal) pc 91.9

Table 2: ModelNet40 shape classification.

3D Shape Classification ® Wall Floor ®Char @Desk ®Bed ®@Door @ Table

3D point segmentation

PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. Qi et al., NuerIPS’17




Implicit Representations of 3D Data

* Explicit shape representations
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Occupancy Network for 3D Reconstruction

* Occupancy function - R> —s {O, 1}
T

3D location

* Training a neural network to learn the following function

f@ . RB X X — [O, 1] * Image: ResNet

/ I \ * Points: PointNet
Occupancy Networks: Learning 3D Reconstruction in Function Space. Mescheder et al., CVPR’19

3D location Input for 3D

Probabilities for
occupancy

reconstruction:
image, point cloud




Occupancy Network for 3D Reconstruction

* Training

Cross-entropy
Ioss function
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Occupancy Networks: Learning 3D Reconstruction in Function Space. Mescheder et al., CVPR’19




Occupancy Network for 3D Reconstruction

Input  3D-R2N2  PSGN  Pix2Mesh AtlasNet Ours

BRERF

1283 ours

Continuous shape representation ‘ % ‘wl \ _

Single image 3D reconstruction

Occupancy Networks: Learning 3D Reconstruction in Function Space. Mescheder et al., CVPR’19




DeepSDF

e of implicit
- surface

[ ] L)
e SDF >0
< °

* Signed distance function

SDF(x)=s:x cR° scR

(@) SDF<0 *

* Train a neural network to predict SDFs
fg(.’L‘) ~ SDF(GB)’ ‘v’zr; S Q * 8 FC layers with dropout

* Loss function e 512-d FC layer with ReLU

e OQutput with tanh
L(fo(x), 5) = | clamp(fy (), 5) — clamp(s, 6) |

distance from the surface over

clamp(:c, 5) = mln(&’ maX(_5’ Zl?)) which we expect to maintain a metric SDF

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. Park et al., CVPR’19




DeepSDF

* Learning the latent space of shapes

(%,y,2) SDF Code SDF
(%,y,2)
(a) Single Shape DeepSDF (b) Coded Shape DeepSDF
fo(x) =~ SDF(x), Vx € fo(zi,®) =~ SDF"*(x)
Code for shape i

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. Park et al., CVPR’19




DeepSDF

e Auto-decoder

* Training objective

1
Input Output # Output alj[gr]fllnz ZC f9 szJ SJ) ;H»Zzllg
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Shape completion from partial point clouds

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. Park et al., CVPR’19




DeepSDF

PEEALE

Figure 1: DeepSDF represents signed distance functions (SDFs) of shapes via latent code-conditioned feed-forward decoder networks.
Above images are raycast renderings of DeepSDF interpolating between two shapes in the learned shape latent space. Best viewed digitally.

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. Park et al., CVPR’19




(a) Input Depth (b) Completion (ours) (¢) Second View (ours) (d) Ground truth (e) 3D-EPN

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. Park et al., CVPR’19




Neural Radiance Fields (NeRF)

* Represent 3D scenes with color information (geometry + appearance)
* Learning a 5D vector-valued function

5D Input Output
F © (.CU, Y, 2, 97 ¢) = (fr qg, b 0— Position + Direction Color -+ Density

3D location  Viewpoint:  Color Density
azimuth, (RGB)

elevation /
Fo : (x,d) — (c,0)

Unit vector

for direction
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Mildenhall et al., ECCV’20
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Neural Radiance Fields (NeRF)

5D Input Output
Position + Direction Color + Density
* Volumetric rendering — ,,f,.<zexzﬂ¢>*|][||]*<RGB¢>_,_-. e
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NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Mildenhall et al., ECCV’20




Neural Radiance Fields (NeRF)



https://www.matthewtancik.com/nerf

Summary

* Neural networks can be applied to 3D data
* Shape recognition, shape reconstruction
* Point cloud segmentation
* View synthesis
* Etc.

* Explicit 3D representations
* Voxels, points, meshes

* Implicit 3D representations
e Learn a function to represent the 3D shape (occupancy, SDFs, radiance fields)




Further Reading

* VoxNet
https://www.ri.cmu.edu/pub files/2015/9/voxnet maturana scherer
iros15.pdf

 PointNet https://arxiv.org/abs/1612.00593

e PointNet++ https://arxiv.org/pdf/1706.02413.pdf

* Occupancy Network https://arxiv.org/abs/1812.03828
* DeepSDF https://arxiv.org/abs/1901.05103

* NeRF https://arxiv.org/abs/2003.08934

* NeRF Explosion 2020 https://dellaert.github.io/NeRF/



https://www.ri.cmu.edu/pub_files/2015/9/voxnet_maturana_scherer_iros15.pdf
https://www.ri.cmu.edu/pub_files/2015/9/voxnet_maturana_scherer_iros15.pdf
https://arxiv.org/abs/1612.00593
https://arxiv.org/pdf/1706.02413.pdf
https://arxiv.org/abs/1812.03828
https://arxiv.org/abs/1901.05103
https://arxiv.org/abs/2003.08934
https://dellaert.github.io/NeRF/
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