
Hierarchical Learning Approaches
for Long Horizon Robotics Tasks

Fei Xia, Research Scientist, Google

Who are we?

● Robotics at Google
● g.co/robotics

Goals:

• Improve robotics via machine

learning, and improve machine
learning via robotics

• Enable learning at scale on real and
simulated robotic systems

tightly interleaves sensing and control at every stage [9, 10]. This kind of dynamic closed-loop
grasping is likely to be much more robust to unpredictable object physics, limited sensory infor-
mation (e.g., monocular camera inputs instead of depth), and imprecise actuation. A closed-loop
grasping system trained for long-horizon success can also perform intelligent pre-grasping manip-
ulations, such as pushing or repositioning objects for an easier grasp. However, a major challenge
with closed-loop grasp control is that the sensorimotor loop must be closed on the visual modality,
which is very difficult to utilize effectively with standard optimal control methods in novel settings.

Figure 1: Seven robots are set up to collect grasping
episodes with autonomous self-supervision.

We study how off-policy deep reinforcement
learning can acquire closed-loop dynamic vi-
sual grasping strategies, using entirely self-
supervised data collection, so as to generalize
to previously unseen objects at test time. The
value of low-level end-effector movements is
predicted directly from raw camera observa-
tions, and the entire system is trained using
grasp attempts in the real world. While the prin-
ciples of deep reinforcement learning have been
known for decades [11, 12], operationalizing
them in a practical robotic learning algorithm
that can generalize to new objects requires a
stable and scalable algorithm and large datasets,
as well as careful system design.

Figure 2: Close-up of a robot cell in our setup (left) and
about 1000 visually and physically diverse training ob-
jects (right). Each cell (left) consists of a KUKA LBR
IIWA arm with a two-finger gripper and an over-the-
shoulder RGB camera.

The implementation in our experiments makes
very simple assumptions: observations come
from a monocular RGB camera located over
the shoulder (see Fig. 2), and actions consist
of end-effector Cartesian motion and gripper
opening and closing commands. The reinforce-
ment learning algorithm receives a binary re-
ward for lifting an object successfully, and no
other reward shaping. This general set of as-
sumptions makes the method feasible to de-
ploy at large scale, allowing us to collect 580k
grasp attempts on 7 real robotic systems. Un-
like most reinforcement learning tasks in the
literature [13, 14], the primary challenge in this
task is not just to maximize reward, but to gen-
eralize effectively to previously unseen objects.
This requires a very diverse set of objects dur-
ing training. To make maximal use of this di-
verse dataset, we propose an off-policy train-
ing method based on a continuous-action gen-
eralization of Q-learning, which we call QT-
Opt. Unlike other continuous action Q-learning
methods [15, 16], which are often unstable due

to actor-critic instability [17, 18], QT-Opt dispenses with the need to train an explicit actor, instead
using stochastic optimization over the critic to select actions and target values [19, 20]. We show that
even fully off-policy training can outperform strong baselines based on prior work, while a moderate
amount of on-policy joint finetuning with offline data can improve performance to a success rate of
96% on challenging, previously unseen objects.

Our experimental evaluation demonstrates the effectiveness of this approach both quantitatively and
qualitatively. We show that our method attains a high success rate across a range of objects not
seen during training, and our qualitative experiments show that this high success rate is due to the
system adopting a variety of strategies that would be infeasible without closed-loop vision-based
control: the learned policies exhibit corrective behaviors, regrasping, probing motions to ascertain
the best grasp, non-prehensile repositioning of objects, and other features that are feasible only when
grasping is formulated as a dynamic, closed-loop process.

2

RL-CycleGAN: Reinforcement Learning Aware Simulation-To-Real

Kanishka Rao1, Chris Harris1, Alex Irpan1, Sergey Levine1, 2, Julian Ibarz1, and Mohi Khansari3

1Google Brain, Mountain View, USA
2University of California Berkeley, Berkeley, USA
3X, The Moonshot Factory, Mountain View, USA

{kanishkarao, ckharris, alexirpan, slevine, julianibarz}@google.com, khansari@x.team

Figure 1. RL-CycleGAN trains a CycleGAN which maps an image from the simulator (left) to a realistic image (middle), a jointly trained RL task ensures
that these images are useful for that specific task. At test time, the RL model may be transferred to real robot (right).

Abstract

Deep neural network based reinforcement learning (RL)
can learn appropriate visual representations for complex
tasks like vision-based robotic grasping without the need
for manually engineering or prior learning a perception
system. However, data for RL is collected via running an
agent in the desired environment, and for applications like
robotics, running a robot in the real world may be extremely
costly and time consuming. Simulated training offers an
appealing alternative, but ensuring that policies trained in
simulation can transfer effectively into the real world re-
quires additional machinery. Simulations may not match
reality, and typically bridging the simulation-to-reality gap
requires domain knowledge and task-specific engineering.
We can automate this process by employing generative mod-
els to translate simulated images into realistic ones. How-
ever, this sort of translation is typically task-agnostic, in
that the translated images may not preserve all features that
are relevant to the task. In this paper, we introduce the RL-
scene consistency loss for image translation, which ensures
that the translation operation is invariant with respect to the
Q-values associated with the image. This allows us to learn
a task-aware translation. Incorporating this loss into un-
supervised domain translation, we obtain RL-CycleGAN, a
new approach for simulation-to-real-world transfer for re-

inforcement learning. In evaluations of RL-CycleGAN on
two vision-based robotics grasping tasks, we show that RL-
CycleGAN offers a substantial improvement over a number
of prior methods for sim-to-real transfer, attaining excellent
real-world performance with only a modest number of real-
world observations.

1. Introduction

Reinforcement learning (RL) can be used to train deep
neural network models to grasp objects directly with im-
age observations [35, 27], or perform navigation with a mo-
bile robot directly from onboard sensor readings [10]. How-
ever, this ability to learn visual representations end-to-end
together with a task controller often comes at a steep price
in sample complexity. Since the data needed for RL is typi-
cally task and policy specific, collecting this data in the loop
with policy training can be particularly difficult. An appeal-
ing alternative is to use RL to train policies in simulation,
and then transfer these policies onto real-world systems.
For acquiring task-relevant visual representations, training
in simulation is suboptimal as it results in representations of
the simulated environment, which may not work as well for
real environments. This simulation-to-reality gap has been
addressed in a variety of ways in prior work, from employ-
ing domain adaptation techniques that modify the simulated

1

ar
X

iv
:2

00
6.

09
00

1v
1

 [c
s.R

O
]

16
 Ju

n
20

20

http://g.co/robotics

Robot @ Home

Image source: iStock photos, Standard license 3

Towards complex and unstructured environments

Image source: iStock photos, Standard license 4

“Classical” robotics

?

Learning based robotics

Levine et al. 2016. Kalashnikov et al. 2018.

Gupta et al. 2019.Gupta et al. 2018. Sermanet et al. 2018.

Bousmalis et al. 2018.

[Rajeswaran et al. 2018.] [Zhu et al 2018] [Kurenkov et al 2019] [Mandlekar et al 2020] [Andrychowicz et al 2019] [Mahler et al 2017] [Mousavian et al 2019]
[Rao et al 2020] [James et al 2019] [Tobin et al 2017] [Peng et al 2018] [Kaspar et al 2020] [Chebotar et al 2019] [Choi et al 2021] [Puig et al 2018] [Erickson et
al 2020] [Tolani et al 2021] [Wu et al 2019] [Peng et al 2018] [Yang et al 2020] 5

Learning-based methods often require
large amount of data to train.

Datasets for Computer Vision

ImageNet, Deng et al 2009. Visual Genome, Krishna et al 2017.

ShapeNet, Chang et al 2015. MS COCO, Lin et al 2014. Pascal VOC, Everingham et al 2012. OpenImage,
Krasin et al 2016.

[Xiao et al 2014] [Fei-Fei et al 2003] [Daimler AG et al 2016] [A. Krizhevsky et al 2009] [A. Krizhevsky et al 2009] [A Geiger et al. 2012] [A. Janoch et al. 2014]
[Mo et al 2019] 6

From Perception to Interaction

Image source: iStock photos, Standard license, Open Image dataset, iGibson dataset 7

?

Learning from interactions with the environment

Image source: iStock photos, Standard license 8[Gopnik et al 1999] [Goldstein et al 1994]

Human learn from interacting with the
environment.

Learning from simulation

RLBench, James et al 2020.

DoorGym, Urakami et al 2019.Ikea assembly, Lee et al 2019. Meta World, Yu et al 2020.

AI2Thor, Kolve et al 2017.

[Savva et al 2019] [Puig et al 2018] [Wu et al 2018] [Ehsani et al 2021] [Xiang et al 2020] [Gan et al 2020]

SAPIEN, Xiang et al 2020.

TDW Gan et al 2020.

9

Learning from simulation

Not based on real-world scenes
Small scale
Lacks sim2real transfer
…

10

Learning from simulation

Goal: Create simulation environments that reflect complexity of the real world, and
develop intelligent agents in those environments.

Visual/Ecological Realism

Ph
ys

ic
s

R
ea

lis
m

Space of Simulation Environments

Real World

11

Visual Realism

Ecological Realism

Physics Realism

Creating a digital playground that replicates
the complexity of the real world

Learning algorithms for interactive
and long-horizon tasks

Large Scale Simulation for Embodied Perception and Robot Learning

12

Goal: Create simulation environments that reflect complexity of the real world, and
develop intelligent agents in those environments.

Image source: iStock photos, Standard license

GibsonEnv

Rendered RGB

Rendered sensor signals

Physics Simulation

13X*Z*H*SMS, GibsonEnv, CVPR 2018.

GibsonEnv - Overview

UDACITY AIRSIM MALMO TORCS

CARLATHOR SYNTHIA VIZDOOM

14

iGibson: A Simulation Environment for Interactive Tasks in Large
Realistic Scenes

15iGIbson, IROS’21

How do these features facilitate developing embodied agents?

Repository of large scale scenes

Large variety of high quality virtual sensor signals Easy to use Human-iGibson interface

Domain RandomizationFully interactive scenes

16S*X*L*M*…FS, iGIbson, Submitted to IROS’21

Creating a digital playground that replicates
the complexity of the real world

Learning algorithms for interactive
and long-horizon tasks

Large Scale Simulation for Embodied Perception and Robot Learning

17

Goal: Create simulation environments that reflect complexity of the real world, and
develop intelligent agents in those environments.

Image source: iStock photos, Standard license

Large Scale Simulation for Embodied Perception and Robot Learning

18

Goal: Develop intelligent agents for long horizon mobile manipulation tasks

Image source: iStock photos, Standard license

Learning algorithms for interactive
and long-horizon tasks

Base subgoal
Arm subgoal

Start
Subgoal 1 Subgoal 2

Subgoal 3

ReLMoGen. Xia et al 2021

SayCan. Google 2022

Introduction

• Mobile manipulation tasks -> a sequence of base and arm subgoals
• Subgoals -> points of interests in the environment, e.g. doors, chairs, cabinets,

waypoints.

Base subgoal
Arm subgoal

Start
Subgoal 1 Subgoal 2

Subgoal 3

19

Introduction

Reinforcement Learning
is good at solving

“where to go”

Motion Generation is
good at solving “how to

reach a point”
How do we combine the

best of both worlds?

20[Wijmans et al 2019] [Kuffner et al 2000]

ReLMoGen

• A framework that leverages a Motion Generator in an RL loop, and lifts the
action space from joint commands to subgoals.

21ReLMoGen, ICRA 2021

AgentEnvironment

Actions
at

(st+1, R(st, at))

ReLMoGen

• A framework that leverages a Motion Generator in an RL loop, and lifts the
action space from joint commands to subgoals.

22

RGB-D

LiDAR
Scan

Task
Info.

Base or Arm
Subgoal

Subgoal
Generation

Policy

Subgoal
Generation

Policy

Motion
Generator

Base or Arm SubgoalLow-level Actions

AgentEnvironment

ReLMoGen, ICRA 2021

Policy Networks

D indicates Dense

23

u

v

R indicates Regression

ReLMoGen, ICRA 2021

Policy Networks

D indicates Dense

24

u

v

R indicates Regression

ReLMoGen, ICRA 2021

Motion Generation

Motion Generation

• A motion planner that
searches for trajectories
based on current sensor
information

• A set of common low-level
controllers that execute the
planned trajectories 

25

Motion Planners used:

• RRT-Connect

• LazyPRM

Training time optimization:

• Jump to the last state in the
plan if plan is collision-free

[Kuffner et al 2000] [Bohlin et al 2000]

Experimental Setup

(a) PointNav (b) TabletopReachM (c) PushDoorNav, ButtonDoorNav

(d) InteractiveObstaclesNav (e) ArrangeKitchenMM (f) ArrangeChairMM

Figure 3: The simulation environments and tasks. (a)(b) show navigation-only and manipulation-only tasks,
(c)(d) show three Interactive Navigation tasks, (e)(f) show two Mobile Manipulation tasks.

cute the planned trajectories. In our solution, we use a bidirectional rapidly-exploring random tree191

(RRT-Connect) [19] to plan the motion of the base and the arm, although we also experiment with192

probabilistic road-maps (PRM) [20] in our evaluation.193

The motion planner for the base is a 2D Cartesian space RRT that searches for a collision-free path194

to the base subgoal location on the local map generated from the most recent LiDAR scan. The base195

subgoals are represented as the desired base 2D locations and orientations.196

The motion planner for the arm comprises a 3D Cartesian space RRT and a simple Cartesian space197

inverse kinematics (IK) based planner. Each planner is applied to different phases of the arm in-198

teraction: a) the motion from the initial configuration to the selected subgoal location, and b) the199

pushing interaction starting from the subgoal location. To move to the selected subgoal, the 3D RRT200

searches for a collision-free path on a local 3D occupancy map (Octomap [37]) generated from the201

most recent depth map. If a path is found, the simple IK-based planner is queried to find a sequence202

of joint configurations to move the end effector in a straight line from the subgoal location along the203

specified pushing direction. Since the goal of this second part of the arm motion is to interact with204

the environment, the path is not collision-free. The arm subgoals are thus represented as the de-205

sired end-effector 3D locations and parameterized pushing actions. We hypothesize that the pushing206

actions can be replaced by other types of parameterized actions (e.g. pulling, grasping, turning,. . .).207

For additional details about our method such as network structure, training procedure and hyperpa-208

rameters, please refer to our supplemental material.209

4 Experimental Evaluation210

4.1 Tasks211

We evaluate our method on seven different tasks. These tasks include navigation, manipulation,212

Interactive Navigation, and Mobile Manipulation (see Fig. 3 for task visualization). We believe these213

tasks represent paradigmatic challenges encountered by robots operating in realistic environments.214

Navigation-Only and Manipulation-Only Tasks: PointGoal navigation [38, 39] and tabletop tasks215

[40] are mature robotic benchmarks. In PointNav, the robot needs to move to a goal without216

collision. In TabletopReachM, the robot needs to touch a point on the table with its end-effector.217

Interactive Navigation (IN) Tasks: In these tasks the robot needs to interact with the environment218

to change the environment’s state in order to facilitate or enable navigation [41]. In PushDoorNav219

and ButtonDoorNav, the robot needs to enter a room behind a closed door, by pushing the door or220

pressing a button, respectively. In InteractiveObstaclesNav task, the robot is blocked by two221

objects and needs to push them aside to reach the goal. Only one of the objects can be pushed, and222

the agent needs to judge solely based on visual appearance (color). These tasks require the robot to223

place its base properly to interact with the objects [42, 43], and to infer where to interact based on a224

correct interpretation of the RGB-D camera information (e.g. finding the door button).225

5

26ReLMoGen, ICRA 2021

Policy Visualization

PointNav

2x speed

27

Policy Visualization

TabletopReachM

4x speed

28

Policy Visualization

TabletopManipM

4x speed

29

Policy Visualization

PushDoorNav

4x speed

30

Policy Visualization

ButtonDoorNav

4x speed

31

Policy Visualization

InteractiveObstaclesNav

4x speed

32

Policy Visualization

ArrangeChairMM

4x speed

33

Policy Visualization

ArrangeKitchenMM

4x speed

34

4x speed

Baselines and Metrics

• Baselines

• SAC on joint velocities

• OAC on joint velocities

• HRL4IN on joint velocities

35[SAC, Haarnoja et al 2018] [OAC, Ciosek et al 2019] [HRL4IN, Li et al 2020]

• Metrics:

• SPL (Success weighted by Path
Length) for navigation tasks

• Task completion (number of
drawers/cabinets closed, chairs
tucked within 10 degs / 10 cm and 5
degs / 5 cm) for mobile
manipulation tasks

Quantitative Results

36

Short horizon tasks: similar performance as baselines

L R H SL RGH H

5H
D
G

51DY 56XFF

+5 1
6
2
5H 0R H
5H 0R H 5

(a) PointNav

L R H SL RGH H

5H
D
G

55HDFK 56XFF

+5 1

2
5H 0R H
5H 0R H 5

(b) TabletopReachM (c) Int.ObstaclesNav (d) PushDoorNav

(e) ButtonDoorNav (f) ArrangeKitchenMM (g) ArrangeChairMM

Fig. 4: Training curves for ReLMoGen and the baselines (SAC, OAC, and HRL4IN). ReLMoGen achieves higher reward with the same
number of environment episodes and higher task completion for all seven tasks while the baselines often converge to sub-optimal solutions.
The curve indicates the mean and standard deviation of the return across three random seeds. Note that the x-axis indicates environment
episodes rather than steps to allow for a fair comparison between solutions that use actions with different time horizons.

distance to the goal, and success reward, RSucc, for task
completion. We have bonus reward for the robot to push
obstacles, doors and buttons, denoted as RMoveObs, RDoor

and RButton. For Mobile Manipulation tasks, we have dense
reward for the robot to close drawers and cabinets, or to tuck
chairs, denoted as RDrawer and RChair. We don’t provide
reward for the robot to approach these objects. Episodes
terminate when any part of the robot body other than the
gripper collides with the environment. More detailed reward
definition and evaluation metrics are on our website.

A. Baselines

SAC (on joint velocities): We run SAC [19] directly on
joint velocities for all the joints on our robot (2 wheels,
1 torso joint, 7 arm joints), similar to previous work on
visuomotor control [10].

OAC (on joint velocities): We run a variant of SAC called
OAC presented by Ciosek et al. [41]. This work applies the
principle of optimism in face of uncertainty to Q-functions
and outperform SAC in several continuous control tasks [41].

HRL4IN: We run the hierarchical RL algorithm presented
by Li et al. [17]. This work shows good performance for
IN tasks. Similar to ours, a high-level policy produces base
and arm subgoals and a variable to decide the part of the
embodiment to use. Different from ours, this method uses a
learned low-level policy instead of a motion generator. With
this baseline we evaluate the effect of integrating RL and
MG instead of learning a low-level policy from scratch.

The action space of ReLMoGen and the baselines have
drastically different time horizons. For fair comparison, we
set the episode length to be roughly equivalent in wall-
clock time of simulation across algorithms: 25 subgoal
steps for ReLMoGen and 750 joint motor steps for the
baselines. To evaluate performance, we use success rate and

SPL [42] for navigation tasks, and task completion (number
of drawers/cabinets closed, chairs tucked within 10°/10 cm
and 5°/5 cm) for mobile manipulation tasks.

B. Analysis

We aim at answering the following research questions with
our analysis in this subsection.

Can ReLMoGen solve a wide variety of robotic tasks
involving navigation and manipulation? In Table I, we
show the task completion metrics across all tasks for our
methods and baselines. In a nutshell, our method achieves the
highest performance across all seven tasks. It also exhibits
better sample efficiency than our baselines (see Fig. 4).

SAC and OAC baseline have comparable performance
to our methods for simpler tasks such as PointNav and
TabletopReachM but fail completely for harder ones,
such as PushDoorNav and ChairArragementMM, due
to collisions or their inability to identify objects that are
beneficial to interact with. OAC only outperforms SAC with
a small margin in one task, which suggests that it remains an
open research question on how to conduct deep exploration
in robotics domain with high dimensional observation space
and continuous action space. To our surprise, HRL4IN base-
line perform worse than SAC baseline for several tasks. This
is potentially caused by our deviation from the original task
setup in [17] since we do not allow collisions with the robot
base during exploration, while HRL4IN has a collision prone
low-level policy. This is consistent with our insight that using
MG instead of a learned low-level policy makes it easier to
train the subgoal generation policy, and that RL is best suited
to learn the mapping from observations to subgoals.

One common failure case for the baselines in IN tasks is
that the agent harvests all the navigation reward by approach-
ing the goal but gets stuck in front of doors or obstacles,

ReLMoGen, ICRA 2021

Quantitative Results

37

Interactive Navigation tasks:

- ReLMoGen outperforms baselines

- ReLMoGen-R has better sample efficiency

(a) PointNav (b) TabletopReachM

L R H SL RGH H

5H
D
G

R+5 1

2
5H 0R H
5H 0R H 5

(c) Int.ObstaclesNav

L R H SL RGH H

5H
D
G

D D RR

D D RR RR

D RR+5 1

2
5H 0R H
5H 0R H 5

(d) PushDoorNav

(e) ButtonDoorNav (f) ArrangeKitchenMM (g) ArrangeChairMM

Fig. 4: Training curves for ReLMoGen and the baselines (SAC, OAC, and HRL4IN). ReLMoGen achieves higher reward with the same
number of environment episodes and higher task completion for all seven tasks while the baselines often converge to sub-optimal solutions.
The curve indicates the mean and standard deviation of the return across three random seeds. Note that the x-axis indicates environment
episodes rather than steps to allow for a fair comparison between solutions that use actions with different time horizons.

distance to the goal, and success reward, RSucc, for task
completion. We have bonus reward for the robot to push
obstacles, doors and buttons, denoted as RMoveObs, RDoor

and RButton. For Mobile Manipulation tasks, we have dense
reward for the robot to close drawers and cabinets, or to tuck
chairs, denoted as RDrawer and RChair. We don’t provide
reward for the robot to approach these objects. Episodes
terminate when any part of the robot body other than the
gripper collides with the environment. More detailed reward
definition and evaluation metrics are on our website.

A. Baselines

SAC (on joint velocities): We run SAC [19] directly on
joint velocities for all the joints on our robot (2 wheels,
1 torso joint, 7 arm joints), similar to previous work on
visuomotor control [10].

OAC (on joint velocities): We run a variant of SAC called
OAC presented by Ciosek et al. [41]. This work applies the
principle of optimism in face of uncertainty to Q-functions
and outperform SAC in several continuous control tasks [41].

HRL4IN: We run the hierarchical RL algorithm presented
by Li et al. [17]. This work shows good performance for
IN tasks. Similar to ours, a high-level policy produces base
and arm subgoals and a variable to decide the part of the
embodiment to use. Different from ours, this method uses a
learned low-level policy instead of a motion generator. With
this baseline we evaluate the effect of integrating RL and
MG instead of learning a low-level policy from scratch.

The action space of ReLMoGen and the baselines have
drastically different time horizons. For fair comparison, we
set the episode length to be roughly equivalent in wall-
clock time of simulation across algorithms: 25 subgoal
steps for ReLMoGen and 750 joint motor steps for the
baselines. To evaluate performance, we use success rate and

SPL [42] for navigation tasks, and task completion (number
of drawers/cabinets closed, chairs tucked within 10°/10 cm
and 5°/5 cm) for mobile manipulation tasks.

B. Analysis

We aim at answering the following research questions with
our analysis in this subsection.

Can ReLMoGen solve a wide variety of robotic tasks
involving navigation and manipulation? In Table I, we
show the task completion metrics across all tasks for our
methods and baselines. In a nutshell, our method achieves the
highest performance across all seven tasks. It also exhibits
better sample efficiency than our baselines (see Fig. 4).

SAC and OAC baseline have comparable performance
to our methods for simpler tasks such as PointNav and
TabletopReachM but fail completely for harder ones,
such as PushDoorNav and ChairArragementMM, due
to collisions or their inability to identify objects that are
beneficial to interact with. OAC only outperforms SAC with
a small margin in one task, which suggests that it remains an
open research question on how to conduct deep exploration
in robotics domain with high dimensional observation space
and continuous action space. To our surprise, HRL4IN base-
line perform worse than SAC baseline for several tasks. This
is potentially caused by our deviation from the original task
setup in [17] since we do not allow collisions with the robot
base during exploration, while HRL4IN has a collision prone
low-level policy. This is consistent with our insight that using
MG instead of a learned low-level policy makes it easier to
train the subgoal generation policy, and that RL is best suited
to learn the mapping from observations to subgoals.

One common failure case for the baselines in IN tasks is
that the agent harvests all the navigation reward by approach-
ing the goal but gets stuck in front of doors or obstacles,

ReLMoGen, ICRA 2021

Quantitative Results

38

Mobile Manipulation Tasks

• ReLMoGen outperforms baselines

• ReLMoGen-D has better sample efficiency

• These tasks requires input-output image space alignment

(a) PointNav (b) TabletopReachM (c) Int.ObstaclesNav (d) PushDoorNav

L R H SL RGH H

5H
D
G

D D RR

D D RR R

D R+5 1

2
5H 0R H
5H 0R H 5

(e) ButtonDoorNav

L R H SL RGH H

5H
D
G

D

D

5 1
6
2
5H 0R H
5H 0R H 5

(f) ArrangeKitchenMM

L R H SL RGH H

5H
D
G

5&KDLU5 1

2
5H 0R H
5H 0R H 5

(g) ArrangeChairMM

Fig. 4: Training curves for ReLMoGen and the baselines (SAC, OAC, and HRL4IN). ReLMoGen achieves higher reward with the same
number of environment episodes and higher task completion for all seven tasks while the baselines often converge to sub-optimal solutions.
The curve indicates the mean and standard deviation of the return across three random seeds. Note that the x-axis indicates environment
episodes rather than steps to allow for a fair comparison between solutions that use actions with different time horizons.

distance to the goal, and success reward, RSucc, for task
completion. We have bonus reward for the robot to push
obstacles, doors and buttons, denoted as RMoveObs, RDoor

and RButton. For Mobile Manipulation tasks, we have dense
reward for the robot to close drawers and cabinets, or to tuck
chairs, denoted as RDrawer and RChair. We don’t provide
reward for the robot to approach these objects. Episodes
terminate when any part of the robot body other than the
gripper collides with the environment. More detailed reward
definition and evaluation metrics are on our website.

A. Baselines

SAC (on joint velocities): We run SAC [19] directly on
joint velocities for all the joints on our robot (2 wheels,
1 torso joint, 7 arm joints), similar to previous work on
visuomotor control [10].

OAC (on joint velocities): We run a variant of SAC called
OAC presented by Ciosek et al. [41]. This work applies the
principle of optimism in face of uncertainty to Q-functions
and outperform SAC in several continuous control tasks [41].

HRL4IN: We run the hierarchical RL algorithm presented
by Li et al. [17]. This work shows good performance for
IN tasks. Similar to ours, a high-level policy produces base
and arm subgoals and a variable to decide the part of the
embodiment to use. Different from ours, this method uses a
learned low-level policy instead of a motion generator. With
this baseline we evaluate the effect of integrating RL and
MG instead of learning a low-level policy from scratch.

The action space of ReLMoGen and the baselines have
drastically different time horizons. For fair comparison, we
set the episode length to be roughly equivalent in wall-
clock time of simulation across algorithms: 25 subgoal
steps for ReLMoGen and 750 joint motor steps for the
baselines. To evaluate performance, we use success rate and

SPL [42] for navigation tasks, and task completion (number
of drawers/cabinets closed, chairs tucked within 10°/10 cm
and 5°/5 cm) for mobile manipulation tasks.

B. Analysis

We aim at answering the following research questions with
our analysis in this subsection.

Can ReLMoGen solve a wide variety of robotic tasks
involving navigation and manipulation? In Table I, we
show the task completion metrics across all tasks for our
methods and baselines. In a nutshell, our method achieves the
highest performance across all seven tasks. It also exhibits
better sample efficiency than our baselines (see Fig. 4).

SAC and OAC baseline have comparable performance
to our methods for simpler tasks such as PointNav and
TabletopReachM but fail completely for harder ones,
such as PushDoorNav and ChairArragementMM, due
to collisions or their inability to identify objects that are
beneficial to interact with. OAC only outperforms SAC with
a small margin in one task, which suggests that it remains an
open research question on how to conduct deep exploration
in robotics domain with high dimensional observation space
and continuous action space. To our surprise, HRL4IN base-
line perform worse than SAC baseline for several tasks. This
is potentially caused by our deviation from the original task
setup in [17] since we do not allow collisions with the robot
base during exploration, while HRL4IN has a collision prone
low-level policy. This is consistent with our insight that using
MG instead of a learned low-level policy makes it easier to
train the subgoal generation policy, and that RL is best suited
to learn the mapping from observations to subgoals.

One common failure case for the baselines in IN tasks is
that the agent harvests all the navigation reward by approach-
ing the goal but gets stuck in front of doors or obstacles,

ReLMoGen, ICRA 2021

Generalization

39

Sim2realNew EmbodimentNew Scenes

Policy Visualization - Fine tuning

PushDoorNav - Fine tuning on novel environments

4x speed4x speed

40

Transfer to new embodiment type

41

Fetch -> Movo Movo on PushDoor Task

Transfer to new embodiment type

Convergence is 60% faster than
from scratch

42

Ideal base
position for Fetch

Ideal base
position for Movo

SAC optimization
Objective

Sim2Real transfer potential

43

Real sensor observations

Sim sensor observations

Sim2Real transfer potential

44

Analysis - Exploration

ReLMoGen has better exploration

45

SAC

joint-space exploration)

ReLMoGen

subgoal-space exploration

Task PointNav TabletopReachM ArrangeKitchenMM ArrangeChairMM

Metric SPL SR SR # Closed 5°/5 cm # Closed 10°/10 cm # Closed 5 cm # Closed 10 cm

ReLMoGen-D (ours) 0.57/0.02/0.58 0.68/0.01/0.68 0.95/0.02/0.96 4.35/1.20/5.72 6.10/1.05/7.3 0.21/0.03/0.23 0.36/0.06/0.43
ReLMoGen-R (ours) 0.63/0.09/0.67 0.72/0.06/0.77 1.0/0.0/1.0 3.43/0.61/3.94 4.91/0.51/5.25 0.06/0.10/0.17 0.11/0.20/0.34
HRL4IN [17] 0.27/0.01/0.28 0.33/0.01/0.35 0.09/0.07/0.19 3.0/0.23/3.3 4.67/0.20/4.95 0.0/0.0/0.0 0.0/0.0/0.0
SAC (joint vel.) [19, 10] 0.60/0.04/0.65 0.60/0.04/0.65 1.0/0.0/1.0 3.42/0.19/3.6 4.95/0.29/5.24 0.0/0.0/0.0 0.0/0.0/0.0
OAC (joint vel.) [41] 0.45/0.01/0.46 0.46/0.01/0.47 1.0/0.0/1.0 1.99/0.61/2.60 3.55/0.48/4.02 0.0/0.0/0.0 0.0/0.0/0.0

Task PushDoorNav ButtonDoorNav InteractiveObstaclesNav

Metric SPL SR SPL SR SPL SR

ReLMoGen-D (ours) 0.36/0.36/0.72 0.41/0.40/0.80 0.42/0.17/0.57 0.50/0.19/0.66 0.54/0.011/0.55 0.58/0.02/0.60
ReLMoGen-R (ours) 0.80/0.02/0.83 0.97/0.02/0.99 0.51/0.15/0.61 0.73/0.21/0.87 0.76/0.01/0.87 0.79/0.11/0.91
HRL4IN [17] 0.0/0.0/0.0 0.0/0.0/0.0 0.0/0.0/0.0 0.0/0.0/0.0 0.0/0.0/0.0 0.0/0.0/0.0
SAC (joint vel.) [19, 10] 0.0/0.0/0.0 0.0/0.0/0.0 0.00/0.01/0.01 0.01/0.01/0.01 0.50/0.36/0.84 0.51/0.37/0.87
OAC (joint vel.) [41] 0.0/0.0/0.0 0.0/0.0/0.0 0.00/0.00/0.01 0.01/0.00/0.01 0.00/0.00/0.01 0.01/0.01/0.01

TABLE I: Task completion metrics for two version of ReLMoGen, one using DQN with discrete subgoal parameterization (ReLMoGen-D)
and one using SAC with continous subgoal parameterization (ReLMoGen-R). We compare with two baselines (see Sec. IV-A). The entries
of this table are in the format of mean/std/max over 3 random seeds and the method with the highest mean value is highlighted in bold.

(a) Latent Space (b) Cartesian Space (c) Interaction map

Fig. 5: Exploration of ReLMoGen-R and SAC. (a) shows the 2D
projection of latent state space: SAC traverses nearby states with
low-level actions, while ReLMoGen-R jumps between distant states
linked by a motion plan. (b) shows the physical locations visited
by ReLMoGen-R and SAC in 100 episodes: ReLMoGen-R covers
a much larger area. (c) shows a top-down map of meaningful
interactions (duration �1s) during exploration. ReLMoGen-R is
able to interact with the environment more than SAC.

failing to learn meaningful interaction with them. On the
other hand, both our ReLMoGen implementations with SGP-
R and SGP-D are able to achieve significant success in tasks
that involve precise manipulation (e.g. ButtonDoorNav),
intermittent reward signal (e.g. ArrangeChairMM and
ArrangeKitchenMM) and alternative phases of base and
arm motion (all IN and MM tasks). Empirically, ReLMoGen-
D outperforms ReLMoGen-R for tasks that involve more
fine-grained manipulation due to its Q-value estimation at
every single pixel, but seems to be less sample efficient
than it for tasks that only require coarse manipulation. We
argue that the main advantage of ReLMoGen is that it
explores efficiently while maintaining high “subgoal success
rates” thanks to its embedded motion generators, resulting
in stable gradients during training. As a bonus, ReLMoGen
performs an order of magnitude fewer gradient updates
than the baselines, which translates to a much shorter wall-
clock time for training (on average 7x times faster). Finally,
our ReLMoGen-D model outputs highly interpretable Q-
value maps: high Q-value pixels correspond to rewarding
interactions, such as buttons, cabinet doors and chair backs.
More visualizations can be found on our website.

Is ReLMoGen better at exploration? Fig. 5 shows the
exploration pattern of a random policy for SAC baseline and
for ReLMoGen-R. Specifically, we visualize the distribution
of the states visited by the policy at the beginning of training.
We project the neural network embedding of the visited states
onto a 2D plane showing the first two principal components.

Base MP Arm MP Success rate

RRT-Connect RRT-Connect 0.99
RRT-Connect Lazy PRM 1.0 (+0.01)
Lazy PRM RRT-Connect 0.99 (+0.0)
Lazy PRM Lazy PRM 1.0 (+0.01)

(a) PushDoorNav Task

Base MP Arm MP # Closed (10°/10 cm)

RRT-Connect RRT-Connect 5.25
RRT-Connect Lazy PRM 5.0 (�0.25)
Lazy PRM RRT-Connect 5.18 (�0.07)
Lazy PRM Lazy PRM 5.09 (�0.16)

(b) ArrangeKitchenMM Task

TABLE II: Our policy trained with RRT-Connect as the motion
planner for base and arm can perform equally well when changing
to Lazy PRM at test time (the first row shows the training setup).

For SAC and ReLMoGen-R, the trajectories of ten episodes
are shown in Fig. 5(a). We can see that SAC baseline only
travels between adjacent states in the feature space because
it explores in joint space (considering wheels as joints). On
the other hand, ReLMoGen can jump between distant states,
as long as they can be connected by the motion generator,
because it explores in subgoal space. The visited states by
ReLMoGen are indicated in red dots connected with dashed
lines. This is also evident when we plot the visited states in
physical, Cartesian space in Fig. 5(b). From Fig. 5(c), we
can see ReLMoGen have more meaningful interactions with
the environment during exploration than SAC.

Can ReLMoGen generalize to different types of motion
planners? During training, we used RRT-Connect as our
motion planner. We want to test whether our method can
zero-shot generalize to a new motion planner, namely Lazy
PRM [21], during test time. We swapped base and/or arm
motion planners and tried different parameters (e.g. number
of trajectory optimization iterations) for our system, and
observed minimal performance drop (see Table. II). Although
different motion planners have different sampling schemas
and timeout criteria, the subgoals generated by our policy can
seamlessly transfer between them. This demonstrates strong
practicality and flexibility of our approach.

V. CONCLUSION

We introduce ReLMoGen, a hierarchical framework that
integrates classical motion generation with reinforcement
learning to solve mobile manipulation tasks. ReLMoGen
leverages the best from both worlds: learning complex sub-
goal prediction from high dimensional observations via RL
and precise low-level action execution via MG. We demon-
strate better task completion and higher training efficiency
compared to other learning based approaches. The learned
policies with ReLMoGen are also robust and can transfer to
different motion planners after training.

Analysis - Interpretability

Visualization of ReLMoGen-D action maps during task execution

46

Main Contributions

• Proposed ReLMoGen, a framework that combines the strengths of RL and MG.
◦ RL: maps observations to subgoals
◦ MG: plans for and executes trajectories for subgoals

• Instantiated ReLMoGen with two different RL algorithms: SAC and DQN
• Outperformed baselines across a variety of tasks: (Interactive) Navigation,

Mobile Manipulation
• Transfer to new motion planners, potential for real deployment

47

Say-Can.github.io

Presenter: Fei Xia, Research Scientist, Robotics at Google

 Robotics at Google

 Everyday Robots

Do as I Can, Not as I Say (SayCan):

Grounding Language In Robotic Affordances

https://say-can.github.io/
https://say-can.github.io/

Michael Ahn*, Anthony Brohan*, Noah Brown*, Yevgen Chebotar*, Omar Cortes*, Byron
David*, Chelsea Finn*, Keerthana Gopalakrishnan*, Karol Hausman*, Alex Herzog+, Daniel
Ho+, Jasmine Hsu*, Julian Ibarz*, Brian Ichter*, Alex Irpan*, Eric Jang*, Rosario Jauregui
Ruano*, Kyle Jeffrey*, Sally Jesmonth*, Nikhil J Joshi*, Ryan Julian*, Dmitry Kalashnikov*,
Yuheng Kuang*, Kuang-Huei Lee*, Sergey Levine*, Yao Lu*, Linda Luu*, Carolina Parada*,
Peter Pastor+, Jornell Quiambao*, Kanishka Rao*, Jarek Rettinghouse*, Diego Reyes*,
Pierre Sermanet*, Nicolas Sievers*, Clayton Tan*, Alexander Toshev*, Vincent Vanhoucke*,
Fei Xia*, Ted Xiao*, Peng Xu*, Sichun Xu*, Mengyuan Yan+

*Robotics at Google

+Everyday Robot

Authors

