Image Segmentation [Implementation]

Group4

Yufei Li

Yurui Mao

Amey Athavia

Task Introduction

• Carvana¹ (online used car startup) Image Masking Challenge

- Goal: develop an algorithm that automatically removes the photo studio background
- Challenge
 - rotating photo with 16 standard images of each vehicle
 - bright reflections and cars with similar colors as the background
- Practical usage
 - Make online used car sales more effective and efficient by displaying car-related pixels only

1. https://www.kaggle.com/competitions/carvana-image-masking-challenge/overview

Carvana Dataset

- Training set
 - 100,064 images (6,254 cars) + corresponding masks
 - Each car has 16 images (different angles)
- Test set
 - 5,088 images (318 cars) + corresponding masks
 - Each car has 16 images

Applied NN Models

U-Net [ronneberger et al. 2015]

SegNet [badrinarayanan et al. 2017]

Evaluation Results

- Metric
 - Dice coefficient (pixel-wise): $DSC = \frac{2|P \cap GT|}{|P| + |GT|}$

 - IoU (pixel-wise): $IoU = \frac{|P \cap GT|}{|P \cup GT|}$ Accuracy (pixel-wise): $Acc = \frac{|P \cap GT|}{|GT|}$
- Results

Model	Dice coefficient	loU	Accuracy
U-Net	0.9884	0.9568	0.9760
FCN	0.9709	0.9512	0.9715
SegNet	0.9509	0.9320	0.9213

Demonstration

U-Net

SegNet

Conclusion

- Among the three neural network models, U-Net produces the overall best performance on the *Carvana* Dataset.
- Existing methods can well distinguish between object pixels and other pixels, e.g., all achieve more than 90% accuracy and IoU.

Future Work

- We hope to implement more Transformer-based models on practical image segmentation tasks
- We consider other downstream tasks such as Segment salt deposits beneath the Earth's surface.