Image Grounding using Attention based Transformer

Aaditya Khant (group 19)
“A man in a white t-shirt does a trick with a bronze-colored yo-yo”
Approach

- MDETR is state of an art Image grounding model based on transformers.
- CLIP is transformer based neural network, which can be applied to any visual classification benchmark by simply providing the names of the visual categories to be recognized, similar to the “zero-shot”.
- Combine this two models to increase accuracy on the task of image grounding by overcoming limitations.
MDETR - Architecture

“A cat with white paws jumps over a fence in front of a yellow tree”
RESNET-101 (pretrained on ImageNet)
Or
EfficientNet family

"A cat with white paws jumps over a fence in front of a yellow tree"

Fixed length of 256 tokens

Because Attention-based transformer
Encoding-Decoding

Length fixed to 100
Object Queries
Output

- **Pred_Box**: bounding box corresponding to each query (100 x 4)
- **Pred_logits**: probability distribution over caption tokens for each query (100 x 257)

A cat with white paws jumps over a fence in front of a yellow tree.
Dataset

- 1.3M image-text pair for training and testing.
- Combined dataset of Flicker30k, MS COCO, CLEVER and Visual-Genome
Losses

• **Contrastive alignment**: enforces alignment between the embedded representations of the object at the output of the decoder, and the text representation at the output of the cross encoder.

• **Soft token prediction**: predict the span of tokens from the original text that refers to each matched object.
Bonus!

• We can use MDETR model for tasks other then phrase grounding such as, **Referring expression comprehension / segmentation** and **Visual Question Answering**.

Figure 5: MDETR provides interpretable predictions as seen here. For the question “What is on the table?”, MDETR fine-tuned on GQA predicts boxes for key words in the question, and is able to provide the correct answer as “laptop”. Image from COCO val set.
CLIP Architecture

Trained on 14 million images for 22,000 object categories!
MDETR – limitation ; CLIP - Advantage

• MDETR uses ‘few-shot’ approach, which results in matching of nonrelevant phrase with image segment. We can use ‘zero-shot’ approach of CLIP to improve accuracy.
Methodology

• Retrieve all bounding boxes from MDETR, that doesn't have probability more than 0.3 for no object class, segment image using these BB. Parse caption for nouns and generate list of captions.

• Pass segmented images and captions through CLIP and generate prediction score.

• For evaluation only flickr30k dataset is used. Pretrained ViT-B/32 model of CLIP is used.

 Caption: A cat with white paws jumps over a fence in front of a yellow tree
 Generated captions
 Image of a cat
 Image of a paws
 Image of a jumps
 Image of a fence
 Image of a front
 Image of a tree
Results

> Seven climbers are ascending a rock face whilst another man stands holding the rope.

<table>
<thead>
<tr>
<th>a Seven</th>
<th>a climbers</th>
<th>a rock</th>
<th>a face</th>
<th>a man</th>
<th>a rope</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.21</td>
<td>0.22</td>
<td>0.21</td>
<td>0.22</td>
<td>0.21</td>
<td>0.22</td>
</tr>
<tr>
<td>0.22</td>
<td>0.22</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.22</td>
</tr>
<tr>
<td>0.21</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.21</td>
<td>0.22</td>
</tr>
<tr>
<td>0.22</td>
<td>0.22</td>
<td>0.23</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
</tr>
<tr>
<td>0.21</td>
<td>0.23</td>
<td>0.23</td>
<td>0.22</td>
<td>0.23</td>
<td>0.22</td>
</tr>
<tr>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
</tr>
</tbody>
</table>

The table above shows the distribution of climbers across different areas. The values represent the probability or frequency of climbers in each area.
Results

• Final submission will contain accuracy on the proposed model.

<table>
<thead>
<tr>
<th>Backbone</th>
<th>Pre-training Image Data</th>
<th>Val R@1</th>
<th>Val R@5</th>
<th>Val R@10</th>
<th>Test R@1</th>
<th>Test R@5</th>
<th>Test R@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resnet-101</td>
<td>COCO+VG+Flickr</td>
<td>82.5</td>
<td>92.9</td>
<td>94.9</td>
<td>83.4</td>
<td>93.5</td>
<td>95.3</td>
</tr>
<tr>
<td>EfficientNet-B3</td>
<td>COCO+VG+Flickr</td>
<td>82.9</td>
<td>93.2</td>
<td>95.2</td>
<td>84.0</td>
<td>93.8</td>
<td>95.6</td>
</tr>
<tr>
<td>EfficientNet-B5</td>
<td>COCO+VG+Flickr</td>
<td>83.6</td>
<td>93.4</td>
<td>95.1</td>
<td>84.3</td>
<td>93.9</td>
<td>95.8</td>
</tr>
</tbody>
</table>

Evaluation of different CNN Backbone in MDETR for phrase grounding
Future Work

- We can eliminate passing of 2D queries. We can improve accuracy by training model to predict soft token prediction and bounding box for each token of caption by passing embedded text as queries.