Comparative
Analysis of Blood
ell Image
Classification

CNNs, Deep Residual and
Contrastive Learning based models




Blood Cell Types -

White Blood Cell Identification
Is an important task

e Useful for recognizing diseases like Leukemia
e Traditional methods like Flow Cytometry and
Fluorescence Microscopy have physical limitations




INCEPTION RESNETS0

Computer Vision
Models
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AlexNet

e AlexNet is a CNN that was originally created in 2012
for an image recognition competition.

o [t was designed for the 224x224 images of

mageNet.

e Modified to make it work on smaller, 120x120
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ResNet50

e ResNet-50 is a convolutional neural network that is 5

0 blocks deep

o This depth can only be efficiently implemented through Residual
Building Block structures because of network degradation
e The Residual Building Blocks can etfectively skip one or more layers
and help combat the exploding/vanishing gradient problem

e Since ResNet was conceived in 2015, the presence o
CNNs have been present in nearly every modern arc
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InceptionResNet V2 )

e This architecture has a very clear residual structure <
along with 3 paths for different types of | o [pa—
convolutions mixed together in a final 1x1 i e i
convolution o Rl e
e Clear inspiration from ResNet '“
e Our best performer ——
e \We're using pretrained weights as a baseline. AL
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Inception V3 o
N s oy R
e |[nceptionv3 can have deeper layers while keeping e 1 .
the number of parameters from growing too large. e comlace ‘ * : *
e |nception v3 architecture has h 1x1, 3x3, and 5x5 QL;UM
convolution with max pooling. ol
o All the convolutions are performed, and the model
picks the what's best
e \We're using pretrained weights as a baseline.
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Supervised Contrastive Learning
(ResNet + SupCon Loss Function) Pranay Khosla

e Contrastive learning is usually a selt-supervised learning technique that uses the difference
between two images to learn the similarity and dissimilarities between the two images.

e SIMCLR is a supervised learning method that can leverage labeled data along with contrastive
learning to learn the model.
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Contrastive Learning (SupCon Loss)

Clusters of points belonging to the same class are pulled together in embedding space,
while simultaneously pushing apart clusters of samples from different classes.
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Conclusion

Need to improve parameters further to prevent
overfitting.

Best Model Accuracy:
99.95%

LeNet50 (Overfit)

09 .59, INCEPTIONRESNETV2 Best Validation Accuracy

Best Overall Network for Blood

RealTesting Cell Classification 9 9 . 5 o %

InceptionResNetV?2



Next Steps
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Questions?



