Comparative Analysis of Blood Cell Image Classification

CNNs, Deep Residual and Contrastive Learning based models

White Blood Cell Identification is an important task

- Useful for recognizing diseases like Leukemia
- Traditional methods like Flow Cytometry and Fluorescence Microscopy have physical limitations

Blood Cell Types -

Computer Vision Models

RESNET50

ALEXNET

LEARNING (SIMCLR)

SUPERVISED CONTRASTIVE

LENET5

INCEPTIONV3

INCEPTION RESNET50

LeNet 5

- LeNet-5 is one of the earliest pre-trained models proposed in 1998.
- Designed for a 32x32 sized image but modified to work on our images
- It has 5 layers with learnable parameters.
- It has 3 convolution layers, two average pooling layers, and two fully connected layers with a softmax classifier.

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 118, 118, 6)	168
average_pooling2d (AverageP ooling2D)	(None, 59, 59, 6)	0
conv2d_1 (Conv2D)	(None, 57, 57, 16)	880
average_pooling2d_1 (Averag ePooling2D)	(None, 28, 28, 16)	0
flatten (Flatten)	(None, 12544)	0
dense (Dense)	(None, 120)	1505400
dense_1 (Dense)	(None, 84)	10164
dense_2 (Dense)	(None, 4)	340

Total params: 1,516,952 Trainable params: 1,516,952 Non-trainable params: 0

VALIDATION ACCURACY 77.51%

TRAIN

ACCURACY

99.95%

VALIDATION LOSS 0.97

AlexNet

- AlexNet is a CNN that was originally created in 2012 for an image recognition competition.
- It was designed for the 224×224 images of ImageNet.
- Modified to make it work on smaller, 120x120 images. These modifications include increasing strides and increasing the depth of the network.

TRAIN ACCURACY 98.64%

VALIDATION ACCURACY 85.89%

VALIDATION LOSS 0.6378%

Laver conv2d

> max poo 2D)

conv2d

max poc 2D)

conv2d

max poo 2D)

dropout

flatter

dense 4

dropout

dense 5

type)	Output Shape	Param #
3 (Conv2D)	(None, 118, 118, 32)	896
ling2d_3 (MaxPooling	(None, 59, 59, 32)	0
4 (Conv2D)	(None, 57, 57, 32)	9248
ling2d_4 (MaxPooling	(None, 28, 28, 32)	0
5 (Conv2D)	(None, 26, 26, 64)	18496
ling2d_5 (MaxPooling	(None, 13, 13, 64)	0
_3 (Dropout)	(None, 13, 13, 64)	0
_1 (Flatten)	(None, 10816)	0
(Dense)	(None, 128)	1384576
_4 (Dropout)	(None, 128)	0
(Dense)	(None, 4)	516

Total params: 1,413,732 Trainable params: 1,413,732 Non-trainable params: 0

ResNet50

- ResNet-50 is a convolutional neural network that is 50 blocks deep • This depth can only be efficiently implemented through Residual Building Block structures because of network degradation
- The Residual Building Blocks can effectively skip one or more layers and help combat the exploding/vanishing gradient problem
- Since ResNet was conceived in 2015, the presence of Residuals in CNNs have been present in nearly every modern architecture
- We're using pretrained weights as a baseline. (ImageNet)

VALIDATION ACCURACY 88.55%

InceptionResNet V2

- This architecture has a very clear residual structure along with 3 paths for different types of convolutions mixed together in a final 1x1 convolution
- Clear inspiration from ResNet
- Our best performer
- We're using pretrained weights as a baseline. (ImageNet)

TRAIN ACCURACY 99.41%

VALIDATION ACCURACY 99.50%

VALIDATION LOSS 0.0209

Inception V3

- Inceptionv3 can have deeper layers while keeping the number of parameters from growing too large.
- Inception v3 architecture has h 1x1, 3×3, and 5×5 convolution with max pooling.
- All the convolutions are performed, and the model picks the what's best
- We're using pretrained weights as a baseline. (Imagenet)

VALIDATION ACCURACY 95.03%

VALIDATION LOSS 0.24

Supervised Contrastive Learning (ResNet + SupCon Loss Function) Pranay Khosla

- Contrastive learning is usually a self-supervised learning technique that uses the difference between two images to learn the similarity and dissimilarities between the two images.
- SIMCLR is a supervised learning method that can leverage labeled data along with contrastive learning to learn the model.
- Fully supervised

VALIDATION ACCURACY 92.73%

LOSS 0.0273

Contrastive Learning (SupCon Loss)

Clusters of points belonging to the same class are pulled together in embedding space, while simultaneously pushing apart clusters of samples from different classes.

Supervised Contrastive

Self Supervised Contrastive

Model Accuracy

Validation Accuracy

overfitting.

99.95%

LeNet50 (Overfit)

99.50%

InceptionResNetV2

99.5% **INCEPTIONRESNETV2**

Best Overall Network for Blood **RealTesting** Cell Classification

Conclusion

Need to improve parameters further to prevent

Best Model Accuracy:

Best Validation Accuracy

Next Steps

Sources

https://www.researchgate.net/publication/320719820 A Comparison of CNNbased_Face_and_Head_Detectors_for_Real-Time_Video_Surveillance_Applications https://arxiv.org/abs/1512.03385 Feng, Vincent "An Overview of ResNet and its Variants," Towards Data Science, 15-Jul-2017. [Online]. Available: https://towardsdatascience.com/anoverview - of - resnet - and - its - variants -5281e2f56035 2 [1] "Alexnet Architecture — Introduction to Architecture of Alexnet," Analytics Vidhya, 19-Mar-2021. [Online]. Available: https://www.analyticsvidhya.com/blog/2021/03/introductionto-the-architecture-of-alexnet/. 19-Mar-2021. 1, 2 [2] A. Briot, P. Viswanath, and S. Yogamani, "Analysis of Efficient CNN Design Techniques for Semantic Segmentation," presented at the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2018, 2018, pp. 663–672 [Online]. Available: https://openaccess. thecvf.com/content_cvpr_2018_workshops/ papers/w12/Briot_Analysis_of_Efficient_ CVPR_2018_paper.pdf. [Accessed: 14-Dec-2021] [3] "Blood cell images by Paul Mooney" https:// www.kaggle.com/paultimothymooney/bloodcells 1, 3

[4] Xufeng, Yao "Classification of white blood cells using weighted optimized deformable convolutional neural networks" 17-Jan-2021. Available: https:// www.tandfonline.com/doi/full/10.1080/ 21691401.2021.1879823 [5] Szegedy, Christian "Computer Vision and Pattern Recognition (cs.CV)" 17-Sep-2014. https://doi.org/10. 48550/arXiv.1409.4842 2 [6] K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," arXiv:1512.03385 [cs], Dec. 2015 [Online]. Available: http://arxiv.org/abs/ 1512.03385 2 [7] I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and P. Doll ar, "Designing Network Design Spaces," arXiv:2003.13678 [cs], Mar. 2020 [Online]. Available: http://arxiv.org/abs/2003.13678. 19-Mar-2021. 2 [8] Saxena, Shipra "Introduction to LeNet-5," Analytics Vidhya, 18-Mar-2021. [Online]. Available: https://www. analyticsvidhya.com / blog / 2021 / 03 / the architecture - of - lenet - 5 / .[Accessed : 9 -Dec-2021] 2 [9] M. R. Khan, "LeNet-5 — A Classic CNN Architecture," Medium, 17-Oct-2018. [Online]. Available: https://medium.datadriveninvestor.com/lenet-5-a-classiccnn-architecture-c87d0b03560d. 19-Mar-2021. [10] Khosla, Prannay, "Supervised Contrastive Learning" 23-Apr-2020 https://doi.org/10.48550/arXiv. 2004.11362 2

Questions?

