Object Detection with DETR

Group 14: Tuan Nguyen Nikhil Darwin Bollepalli Erum Hooda

DETR Architecture

- DETR: Object **DE**tection with **TR**ansformers
- Goal:
 - Evaluate our own implementation of DETR against original DETR implementation by Facebook

Transformer Encoder-Decoder

[3]

Encoder

- Input = feature map + positional encodings
- Has multi-head self-attention module and feed forward network
- Encodes image features
- Decoder
 - Input = encoder output + queries
 - N queries learned in training
 - Each query results in bounding box + class label
 - Some queries map to no object
 - Output fed into feed forward network

Loss Function

- Bipartite Matching
 - Assign each predicted bounding box + class label to a ground truth bounding box + class label
 - 1:1 matching
- Hungarian Algorithm
 - Finds optimal bipartite matching
 - Minimize total loss

Backbone: MobileNetV2

(d) Mobilenet V2

- Backbone:
 - pretrained CNN
 - Outputs feature representation of input image
- MobileNetV2 chosen over ResNet50 because it is smaller, which means:
 - $\circ \qquad \text{shorter running time} \qquad$
 - Less memory used
- Outputted feature map fed into Encoder-Decoder

Loss vs Accuracy Curve: MobileNetV2

Training time: 8+ hours

Top-1 accuracy : 75%

Epochs trained: 200

Batch size: 128

Dataset: ImageNet Subset

Dataset

COCO dataset

- 91 classes, including "N/A"
- 328K images

Training

- Training DETR is extremely resource intensive even using a smaller backbone
 - 41M parameters VS 16M parameters
- Impractical to train on consumer hardware
 - Original paper trained on 16 V100 GPUs
 - We had 1 P100 (Kaggle)
 - 1 epoch of full transformer took 10 hours on Kaggle
 - \circ 1 epoch of the scaled down transformer took 4 hours

Hyperparameters								
	Queries	Hidden	Heads	Encoder	Decoder	Feedforward	Learning Rate	Batch Size
Original	100	512	8	6	6	2048	1.00E-04	64
1st Attempt	100	512	8	6	6	2048	0.1	1
2nd Attempt	50	512	1	1	1	1024	0.1	1

Results

- Ability to train was limited
 - Kaggle kept timing out
 - 1 epoch on full transformer
 - 5 epochs on scaled down transformer
- Transformer proved to be a much bigger bottleneck compared to the backbone

Questions?

References

[1]

https://www.analyticsvidhya.com/blog/2020/05/facebook-detection-transformer-detr-a-tran sformer-based-object-detection-approach/

[2] <u>https://paperswithcode.com/method/mobilenetv2</u>

[3] https://medium.com/swlh/object-detection-with-transformers-437217a3d62e

[4] https://paperswithcode.com/dataset/coco

[5]

https://medium.com/analytics-vidhya/up-detr-unsupervised-pre-training-for-object-detection_n-with-transformers-paper-explained-84611e27a144

[6] https://arxiv.org/pdf/1709.01507.pdf