Few-shot object classification
in clutter scenes

Jishnu Jaykumar Padalunkal
Team-11 | CS 6384 Computer Vision

The University of Texas at Dallas

Few-shot object classification
in clutter scenes

* Few-Shot Learning is a sub-area of machine learning. It’s about
classifying new data when you have only a few training samples with
supervised information (neptune.ai).

* Formulated as an N-way-K-shot problem (Episodes)
* N := number of classes
e K := number of samples per class
* In a fixed setup, this remains same for all classes
* |In a variable setup, this varies across classes

https://neptune.ai/blog/understanding-few-shot-learning-in-computer-vision

Few-shot object classification
in clutter scenes

training data test set

=
,/‘ 3 s -

meta-training

meta-testing

Remember “training data” and “test set” as “Support” and “Query” set respectively
Here, it’s a 5-way-1-shot setup (fixed episode variant)

Image: https://bair.berkeley.edu/blog/2017/07/18/learning-to-learn

https://bair.berkeley.edu/blog/2017/07/18/learning-to-learn/

Few-shot object classification
in clutter scenes

Classification
+ Localization

Object Detection

Classification

CAT CAT, DOG, DUCK

We will be dealing with classification only. i.e. Given an image containing a single
object, classify it.

Image: https://www.kaggle.com/getting-started/169984

https://www.kaggle.com/getting-started/169984

Few-shot object classification
in clutter scenes

y]

—

428

- o
A

>

Cereal box

Toothpaste Segmentation

Here, the test scene is an example of clutter scene containing various objects.

Image-courtesy: Dr. Yu Xiang

Motivation

e The benchmarks for few-shot learning
e Omniglot: 50 alphabets, 1,623 classes, 20 images per class (105 x 105 resolution)
o Mini-lImageNet: 100 classes, 600 images per class (84 x 84)
e The performance almost saturates on these datasets
e Inrobotics, we would like to employ few-shot learning techniques for object
recognition. There is no good dataset for few-shot object learning in robotic
manipulation settings.
e Also, getting labelled real data is non-trivial as it requires lot of resources.
o Question is can we learn from simulated examples and perform well on real
world data points? Yeah, that’s right => Sim2Real
e Thus, we developed a multi-view dataset.
o "TESLA” for mulTi-view RGB dataset for fEw-Shot LeArning
e This will be used for few shot object classification in clutter scenes.

TESLA Dataset

- TESLA root
- Training (Synthetic, 125 classes)
- Object-Class
- Support (Synthetic)
- S-Img-1
- S-Img-2
- Query (Google Scenes)
- Q-Img-1
- Q-Img-2
- Test (Real, 198 classes, 52 classes have support + query images,
11 classes are common between train and test which have support + query set)
- Object-Class € {Object-Class}’
- Support (Real Object)
- S'-Img-1
- S'-Img-2
- Query (0OCID)
- Q'-Img-1
- Q'-Img-2

Cropped support examples

TESLA Dataset creation

° Training Data [Created using PyBullef]
o Simulated objects
[] 330 3D models of Objects, cropped using object mask
[] Google Dataset (discussed in one of the previous lectures)
Support set contains 9 views of each object (clean)
Query set is formed by cropping the required object from simulated clutter
scene using object mask.

v == - <= WP Cropped query examples =>

Ry iove_eany_ Oy s Lesdeshp,_Summt. et Leadership Sumeit PecatLeadorcnp S Remingion TStuoHaL.D.

- &6 @8 & o

Raze_Taipan Wste At Rase_Tpan Bisck Ambid Raze Noga. MO Gaming Raier Krskan Pro hasdat Raee Krskao 71 Cheoma_

Google 3D Objects (330)

Observation: Query set may have occlusions.
Support set is void of it. Simulated single object and clutter scenes

TES I—A Data Set C re at I O n Observation: Query set may have occlusions.

Support set is void of it.
e Testdata
o 336 objects from the real world forms the support set
m 9 views per class/object (clean), cropped using object mask
o OCID - Object Clutter Indoor Dataset
m Cropping objects from the real clutter scenes using object mask
forms the query set

Cropped Query Samples
OCID Dataset: pp y p

https://www.acin.tuwien.ac.at/en/vision-for-robotics/software-tools/object-clutter-indoor-dataset/

https://www.acin.tuwien.ac.at/en/vision-for-robotics/software-tools/object-clutter-indoor-dataset/

TESLA Dataset creation (Test Data: Support)

Source: Dr. Yu Xiang

https://docs.google.com/file/d/1LV8zD_4Xy2M4rCK6SQNNJrHkdyJpn3OP/preview

TESLA Dataset creation (Test Data: Support)

Source: Dr. Yu Xiang

https://docs.google.com/file/d/1Bq5jCW35o4d1PGkpxrtwxpaG4DAH_Crs/preview

TESLA Dataset on Meta-Dataset Benchmark

e Meta-Dataset is a benchmark with
o Various datasets
o Various models for Few-Shot and Meta-Learning
o The newer version also includes transfer learning artifacts as well
o Code: https://github.com/google-research/meta-dataset
e TESLA plugged into Meta-Dataset Benchmark (Our experiments)
o Runon
m Prototypical Networks
Matching Networks
MAML
Proto-MAML
CrossTransformers
CrossTransformers + SICLR

https://github.com/google-research/meta-dataset

Embedding_fn decided based on Embedding_fn Num,

isodes (val IS OTE kPR ERT)

Results
95% Confidence Interval for Accuracy metric

Mixture-filtered

using 600 episodes)

Real + OCID

Unseen-filtered

Seen (11 classes)

Seen-filtered

Synthetic

Unseen-filtered

crosstransformer-simclr-episodes

Matching-60
Matching-filtered-60
Prototypical-60
Prototypical-filtered-60
MAML-60
MAML-filtered-60
PROTO_MAML
PROTO_MAMLfiltered

crosstransformer
crosstransformer-filtered
crosstransformer-simcir-episodes

MD-Default
MD-Default
Our Setup

Our Setup

MD-Default
MD-Default
MD-Default

Our Setup
Our Setup
Our Setup
Our Setup
Our Setup
Our Setup
Our Setup
Our Setup

Our Setup
Our Setup
Our Setup

four_layer_convnet 600/600, 75K
four_layer_convnet 600/600, 75K
resnet, im_h=126 600/600, 75K
resnet34, im_h=126 600/600, 75K
four_layer_convnet 60/600, 75K
resnet34
resnet34

resnet34, im_h=126 60/600, 75K
resnet34, im_h=126 60/600, 75K
resnet34, im_h=126 60/600, 75K
resnet34, im_h=126 60/600, 75K
resnet34, im_h=126 60/600, 75K
resnet34, im_h=126 60/600, 66K
resnet34, im_h=126 60/600, 75K
resnet34, im_h=126 60/600, 75K

0.351786, +/- 0.008372
0.539673, +/- 0.011071

0.517028, +/- 0.010846

0.529191, +/-0.010521
0.497081, +/-0.011635

60/600, 100K (MD- 0.499650, +/- 0.010394
60/600, 400K(MD-0.608311, +/- 0.010610

0.623470, +/- 0.010596
0.538124, +/-0.010248
0.584256, +/-0.010171
0.575437, +/-0.010576
0.560356, +/- 0.010829
0.459575, +/- 0.011880
0.609769, +/- 0.010054
0.570884, +/-0.010422

resnet34, im_h=126 60/600, 100K (MD- 0.562897, +/- 0.009284
resnet34, im_h=126 60/600, 100K(MD-0.566504, +/- 0.010191
resnet34, im_h=126 60/600, 400K(MD-(0.626996, +/- 0.010652

Without any pre-trained backbones

0.169035, +/- 0.007896
0.205882, +/- 0.008823
0.179460, +/- 0.007989
0.182286, +/- 0.006716
0179157, /- 0.007556
0.184342, +/- 0.007407
0316665, +/- 0.009698

0.374995, +/- 0.008338
0.587700, +/- 0.010779
0.559975, +/- 0.010613
0.558913, +/- 0.010570
0.547904, +/- 0.011396
0.539116, +/- 0.010151
0.637957, +/- 0.010854

With pre-trained backbones
As Resnet34 performs better, remaining models will be trained using Resnet34 as pretrained backbone to reduce training permutations (with learning_rate=0.001052178216688174 and num_valid_Episodes=60, save_ckpt_every=1000)

0.285045, +/- 0.009277
0.263297, +/- 0.009402
0.320632, +/- 0.009737
0.344717, +/-0.010037
0.206363, +/- 0.007598
0.162691, +/- 0.007760
0.283211, +/- 0.009118
0.270062, +/-0.009382

0.269304, +/- 0.009098
0.290602, +/- 0.009877
0.385578, +/-0.011231

0.654113, +/- 0.010557
0.577684, +/- 0.009264
0.613562, +/- 0.010426
0.612460, +/-0.011133
0.580145, +/- 0.011243
0.515377, +/-0.011777
0.631798, +/- 0.010243
0.602918, +/-0.010226

0.585234, +/-0.009158
0.603281, +/- 0.010184
0.648641, +/-0.010854

0.197848, +/- 0.008278
0.220622, +/- 0.007588
0.194610, +/- 0.006971
0.205379, +/- 0.007458
0.202738, +/- 0.008290
0.208177, +/- 0.008680
0333432, +/- 0.009913

0.301564, +/- 0.009420
0.280520, +/- 0.009962
0.332194, +/- 0.009586
0.370607, +/- 0.010119
0.212390, +/- 0.008105
0.160266, +/- 0.007101
0.290773, +/- 0.009308
0.286915, +/- 0.008756

0.273955, +/- 0.009453
0.299556, +/- 0.009380
0.382234, +/- 0.010656

0.394100, +/- 0.008297
0.562442, +/-0.010648

0.524756, +/- 0.010433

0.535399, +/-0.010705
0.548973, +/-0.011200
0.579684, +/- 0.009763
0.662520, +/-0.010078

0.704983, +/- 0.009938
0.618326, +/- 0.009694
0.666462, +/- 0.009833
0.658950, +/- 0.010445
0.588134, +/-0.011163
0.567824, +/- 0.011271
0.714419, +/- 0.009987
0.667483, +/- 0.010389

0.629967, +/- 0.010086
0.654695, +/-0.010354
0.731127, +/- 0.009276

0.226971, +/- 0.009060
0.334560, +/- 0.010086

0.293627, +/- 0.008860

0.325308, +/- 0.009337
0.310036, +/- 0.009164
0.369341, +/-0.010254
0.516159, +/- 0.011027

0.440081, +/- 0.010261
0.458149, +/- 0.010653
0.496791, +/-0.011027
0.510729, +/-0.010442
0.323809, +/- 0.009563
0.355348, +/- 0.009702
0.469772, +/-0.010711
0.443909, +/- 0.011047

0.441077, +/- 0.010642
0.454782, +/- 0.011205
0.614708, +/-0.011141

0.613413, +/-0.010703
0.803420, +/- 0.007868
0.770191, +/- 0.008516
0775070, +/- 0.008376
0.748170, +/- 0.010205
0.924512, +/- 0.004646
0.895779, +/-0.005742

0.854438, +/- 0.006309
0.653966, +/- 0.015696
0.784394, +/- 0.009504
0.743737, +/-0.011178
0.791220, +/- 0.009508
0.725636, +/- 0.010490
0.892056, +/- 0.007020
0.771586, +/-0.010995

0.945140, +/- 0.003926
0.906597, +/- 0.006263
0.892334, +/-0.005978

0592732, +/- 0.010341
0.766079, +/- 0.007914
0.733019, +/- 0.008820
0.743541, +/- 0.009060
0.709779, +/- 0.008960
0.898203, +/- 0.005773
0.889922, +/- 0.005706

0.840961, +/- 0.006970
0.851842, +/- 0.006956
0.783002, +/- 0.007689
0.813797, +/-0.006679
0.718783, +/- 0.009990
0.725636, +/- 0.010490
0.867042, +/- 0.007120
0.881390, +/- 0.006758

0.920558, +/- 0.004791
0.927241, +/- 0.004542
0.900091, +/-0.004302

Sample output for CrossTransformer(SimCLR) case

s; mustard_bottle s, mustard_bottle s, mustard_bottle s; mustard_bottle s; mustard_bottle s, mustard_bottle q; mustard_bottle

N

Support/Query: Mustard
bottle. All but one prediction is
wrong which is reasonable as
well because cracker box is
present behind the mustard
bottle

q:

s; tennis_batennis_badj; lemon q; lemon

. . D D NOTE: Images without/with border

are support/query images
Support/Query: Tennis ball, wrongly predicted as lemon which is respectively. Green/Red border

reasonable as both have similar visual features indicates that prediction is

correct/wrong.

Questions?

