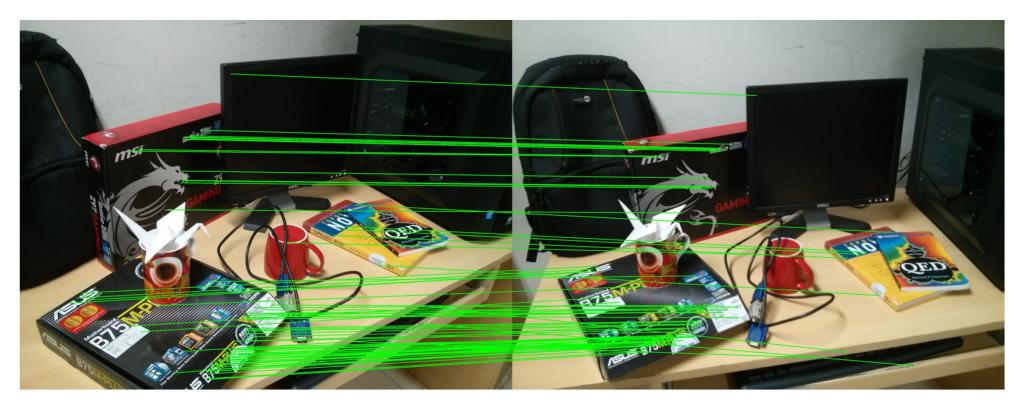


CS 6384 Computer Vision Professor Yu Xiang The University of Texas at Dallas

Feature Detection and Matching

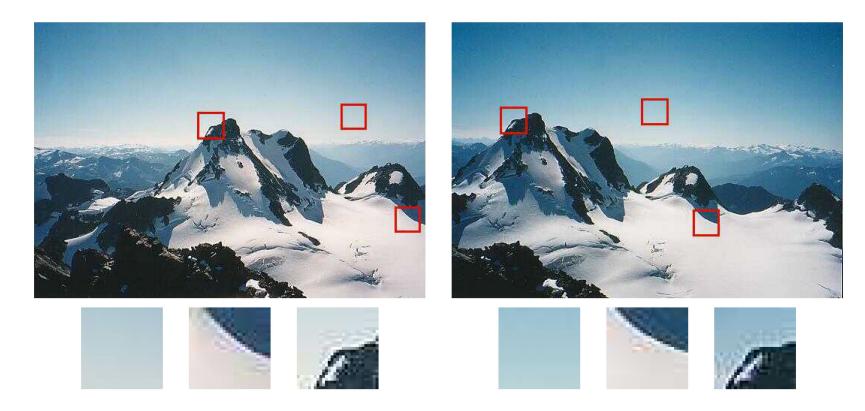


Geometry-aware Feature Matching for Structure from Motion Applications. Shah et al, WACV'15

Applications: stereo matching, image stitching, 3D reconstruction, camera pose estimation, object recognition

Feature Detectors

 How to find image locations that can be reliably matched with images?



Feature Detectors

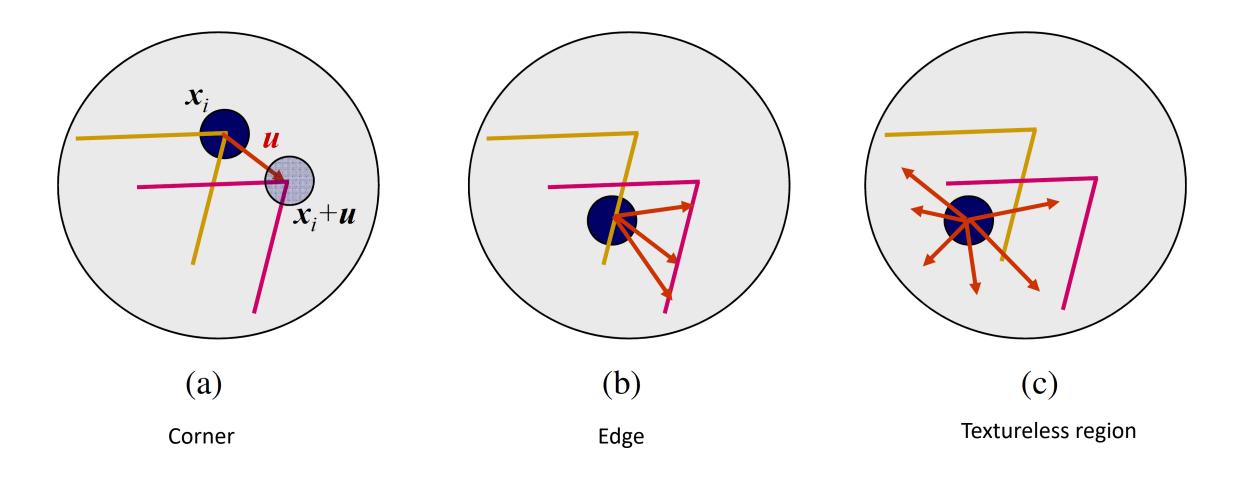


Image Data

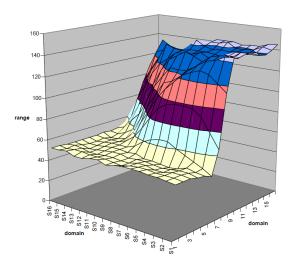
width

 $H \times W$

Grayscale [0, 255]

0.2989 * R + 0.5870 * G + 0.1140 * B

I	4.5	(0)	00	107	120	122	107	122
	45	60	98	127	132	133	137	133
	46	65	98	123	126	128	131	133
	47	65	96	115	119	123	135	137
	47	63	91	107	113	122	138	134
	50	59	80	97	110	123	133	134
	49	53	68	83	97	113	128	133
	50	50	58	70	84	102	116	126
	50	50	52	58	69	86	101	120



Function $I(\mathbf{x}) \, f(\mathbf{x})$

I(x, y) f(x, y)

RGB color space

 $H \times W \times 3$

height

2/9/2022

[0, 255]

Yu Xiang

Linear Filtering

45	60	98	127	132	133	137	133
46	65	98	123	126	128	131	133
47	65	96	115	119	123	135	137
47	63	91	107	113	122	138	134
50	59	80	97	110	123	133	134
49	53	68	83	97	113	128	133
50	50	58	70	84	102	116	126
50	50	52	58	69	86	101	120

 0.1
 0.1
 0.1

 0.1
 0.2
 0.1

 0.1
 0.1
 0.1

=

*

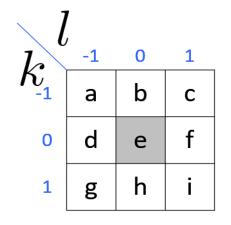
69	95	116	125	129	132
68	92	110	120	126	132
66	86	104	114	124	132
62	78	94	108	120	129
57	69	83	98	112	124
53	60	71	85	100	114

f(x,y)

h(x,y)

g(x,y)

Correlation $g(i,j) = \sum_{k,l} f(i+k,j+l)h(k,l)$ $g = f \otimes h$



Kernel

Filtering vs. Convolution

• Filtering
$$g(i,j) = \sum_{k,l} f(i+k,j+l)h(k,l)$$

What is the difference of the second second

$$\begin{array}{c|cccc} l & & & \\ k_{-1} & a & b & c \\ 0 & d & e & f \\ 1 & g & h & i \end{array}$$

What is the difference?

h(x,y)

- Convolution
$$g(i,j) = \sum_{k,l} f(i-k,j-l)h(k,l)$$

$$g = f * h$$

Filter flipped vertically and horizontally

Properties of Convolution

Commutative Associative

$$a \star b = b \star a \qquad (((a \star b_1) \star b_2) \star b_3) = a \star (b_1 \star b_2 \star b_3)$$

Distributes over addition

Scalars factor out

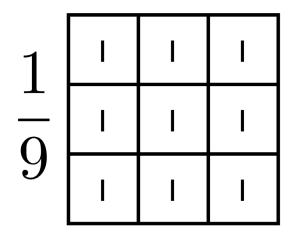
$$a \star (b + c) = (a \star b) + (a \star c) \qquad \lambda a \star b = a \star \lambda b = \lambda (a \star b)$$

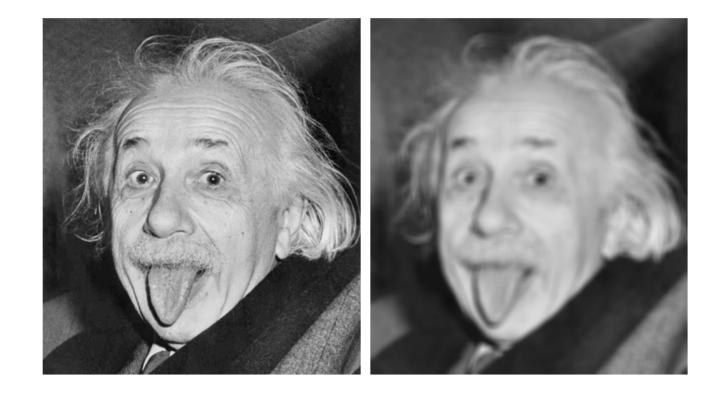
Derivative Theorem of Convolution

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$

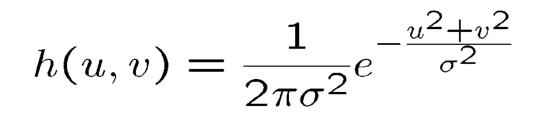
Box Filter

• Replace a pixel with a local average (smoothing)

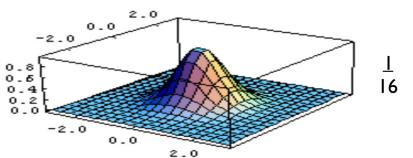


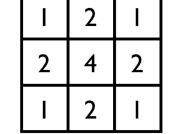


Gaussian Filter



Unit: pixels



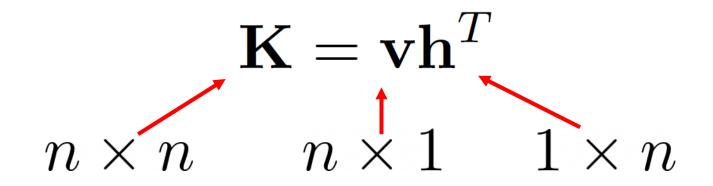


Standard deviation $\,\sigma\,$

- Pixels at a distance of more than 3σ are small
- Typical filter dimension $\lceil 6\sigma \rceil \times \lceil 6\sigma \rceil$
- Large σ , large filter size

Separable Filtering

• A 2D convolution can be performed by a 1D horizontal convolution followed a 1D vertical convolution



Outer product

Separable Filtering

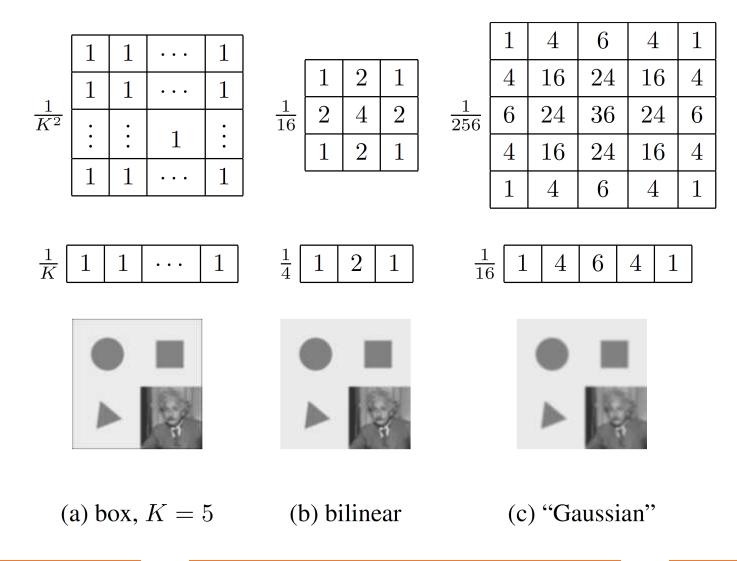
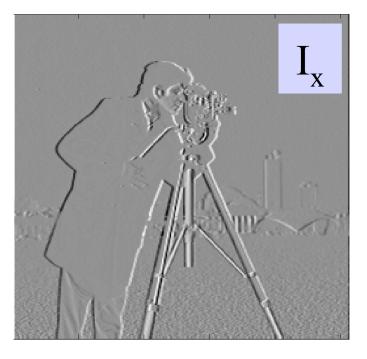


Image Gradient



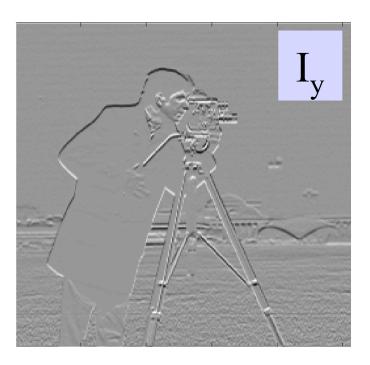


Image Gradient

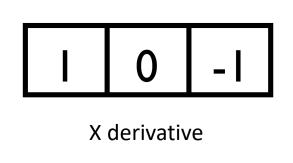
Derivative of a function

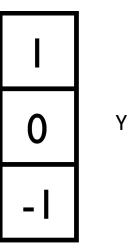
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

• Central difference is more accurate

e
$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

- Image gradient with central difference
 - Applying a filter

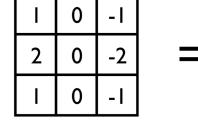




Y derivative

Image Gradient

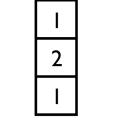
• Sobel Filter



-1

-2

- |

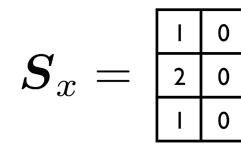


0

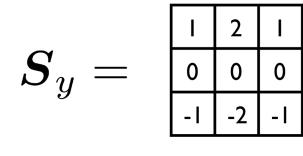
x-derivative

- 1

weighted average and scaling



 $rac{\partial \boldsymbol{f}}{\partial x} = \boldsymbol{S}_x \otimes \boldsymbol{f}$



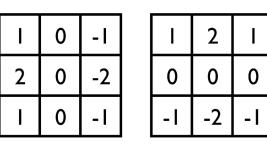
 $rac{\partial oldsymbol{f}}{\partial y} = oldsymbol{S}_y \otimes oldsymbol{f}$

 $abla \boldsymbol{f} = \left[rac{\partial \boldsymbol{f}}{\partial x}, rac{\partial \boldsymbol{f}}{\partial y}
ight]$

9/27/2021

Common Derivative Filters

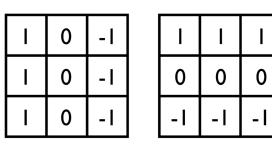
Sobel



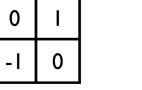
3	0	-3	
10	0	-10	(
3	0	-3	-

3	10	3
0	0	0
-3	-10	-3

Prewitt



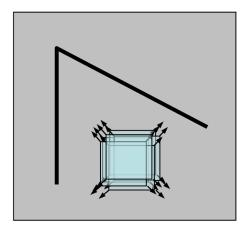
Roberts

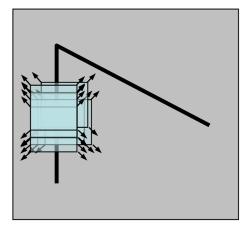


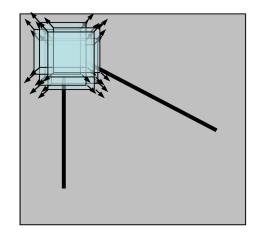
 I
 0

 0
 -1

• Corners are regions with large variation in intensity in all directions

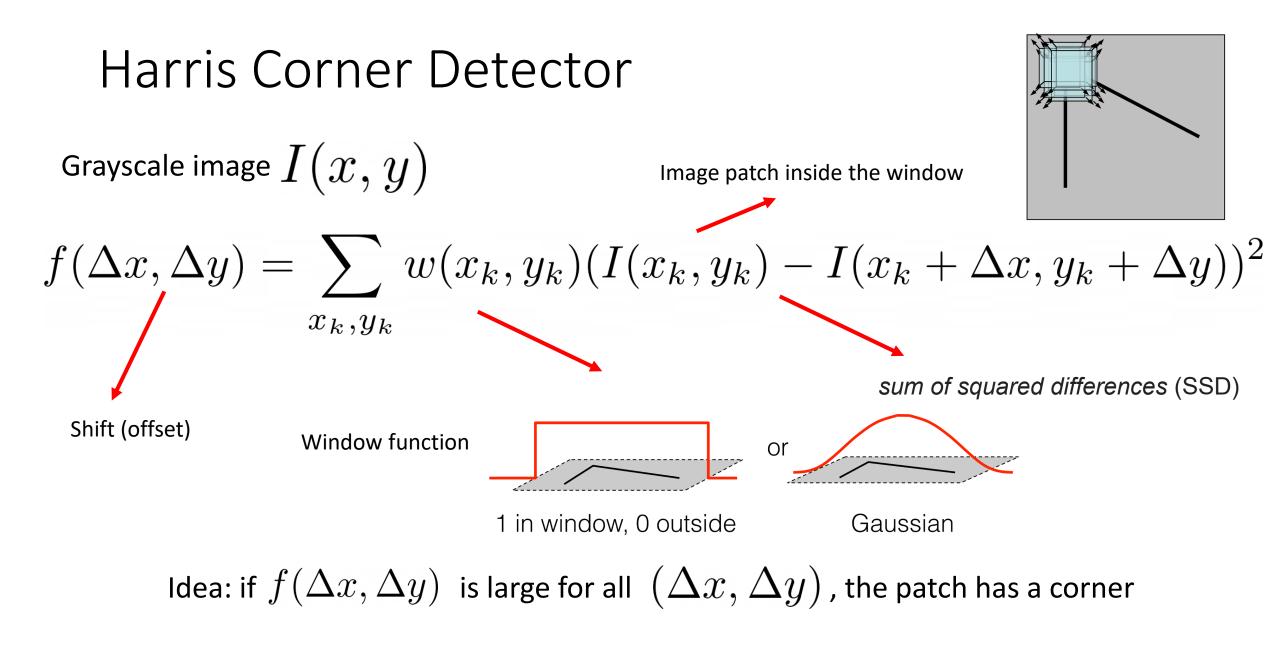






"flat" region: no change in all directions

"edge": no change along the edge direction "corner": significant change in all directions



• Taylor series

One dimension $f(x_0 + \Delta x) = f(x_0) + \Delta x f'(x_0) + \frac{1}{2!} (\Delta x)^2 f''(x_0) +$ about x_0

Two dimension about (x, y)

 $f(x + \Delta x, y + \Delta y) = f(x, y) + [f_x(x, y)\Delta x + f_y(x, y)\Delta y] + \frac{1}{2!} [(\Delta x)^2 f_{xx}(x, y) + 2\Delta x\Delta y f_{xy}(x, y) + (\Delta y)^2 f_{yy}(x, y)] + \frac{1}{3!} [(\Delta x)^3 f_{xxx}(x, y) + 3(\Delta x)^2 \Delta y f_{xxy}(x, y) + 3\Delta x (\Delta y)^2 f_{xyy}(x, y) + (\Delta y)^3 f_{yyy}(x, y)] + \dots$

Sum of squared
$$f(\Delta x, \Delta y) = \sum_{x_k, y_k} w(x_k, y_k) (I(x_k, y_k) - I(x_k + \Delta x, y_k + \Delta y))^2$$
 differences

First order approximation $I(x + \Delta x, y + \Delta y) \approx I(x, y) + I_x(x, y)\Delta x + I_y(x, y)\Delta y$ X derivative Y derivative Y derivative

$$f(\Delta x, \Delta y) \approx \sum_{x,y} w(x,y) (I_x(x,y)\Delta x + I_y(x,y)\Delta y)^2$$

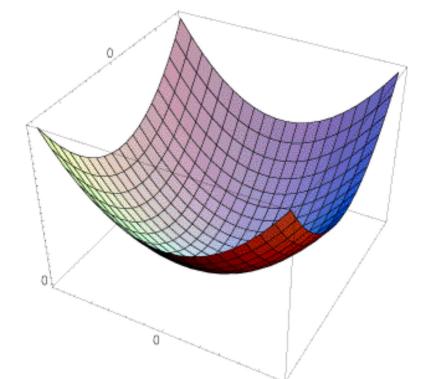
$$f(\Delta x, \Delta y) \approx (\Delta x \quad \Delta y) M\begin{pmatrix}\Delta x\\\Delta y\end{pmatrix} \qquad M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y\\I_x I_y & I_y^2 \end{bmatrix} = \begin{bmatrix} \sum_{x,y} w(x,y) I_x^2 & \sum_{x,y} w(x,y) I_x I_y\\\sum_{x,y} w(x,y) I_x I_y & \sum_{x,y} w(x,y) I_y^2 \end{bmatrix}$$

Idea: if $f(\Delta x, \Delta y)$ is large for all $(\Delta x, \Delta y)$, the patch has a corner

• A quadratic function

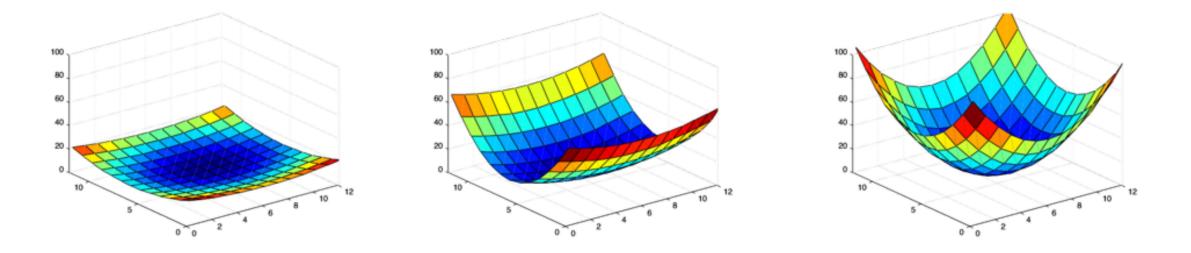
$$f(\Delta x, \Delta y) pprox (\Delta x \quad \Delta y) M iggl(egin{array}{c} \Delta x \ \Delta y \end{array} iggr)$$

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} = \begin{bmatrix} \sum_{x,y} w(x,y) I_x^2 & \sum_{x,y} w(x,y) I_x I_y \\ \sum_{x,y} w(x,y) I_x I_y & \sum_{x,y} w(x,y) I_y^2 \end{bmatrix}$$



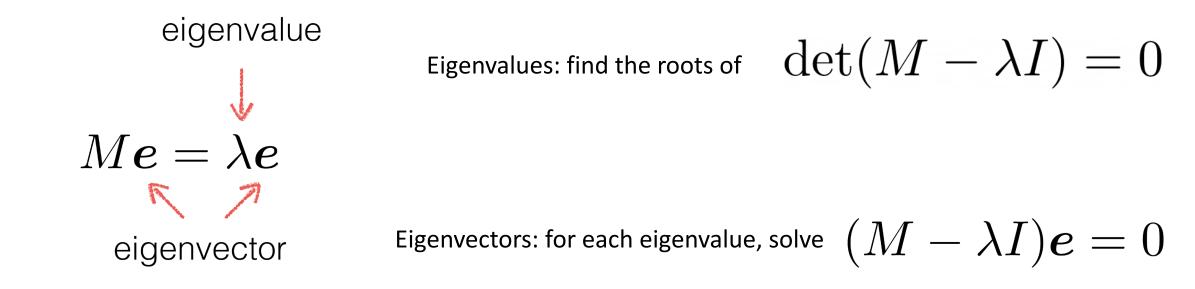
Gradient covariance matrix

• A quadratic function $f(\Delta x, \Delta y) \approx (\Delta x \quad \Delta y) M \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$



Flat Edge Corner Idea: if $f(\Delta x,\Delta y)$ is large for all $(\Delta x,\Delta y)$, the patch has a corner

• Compute the eigenvalues and eigenvectors of $\,M\,$



- Real symmetric matrices
 - All eigenvalues of a real symmetric matrix are real
 - Eigenvectors corresponding to distinct eigenvalues are orthogonal

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} = \begin{bmatrix} \sum_{x,y} w(x,y) I_x^2 & \sum_{x,y} w(x,y) I_x I_y \\ \sum_{x,y} w(x,y) I_x I_y & \sum_{x,y} w(x,y) I_y^2 \end{bmatrix}$$

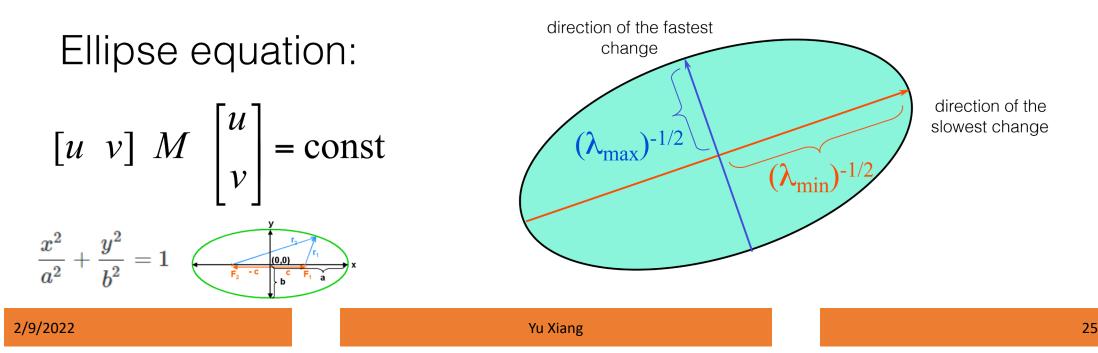
• Since M is symmetric, we have

$$M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

• Since M is symmetric, we have

$$M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

• We can visualize M as ellipse with axis lengths determined by the eigenvalues and orientation determined by R

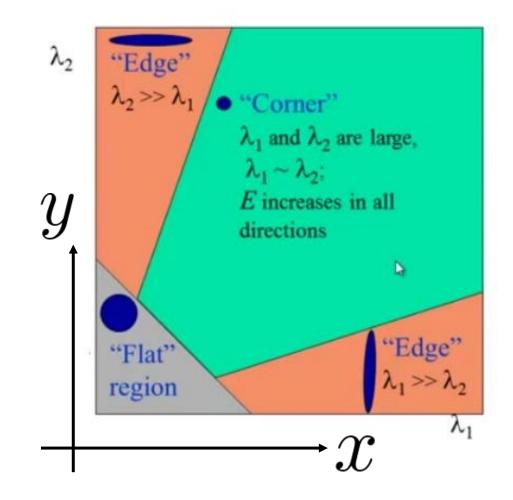


• Interpreting Eigenvalues

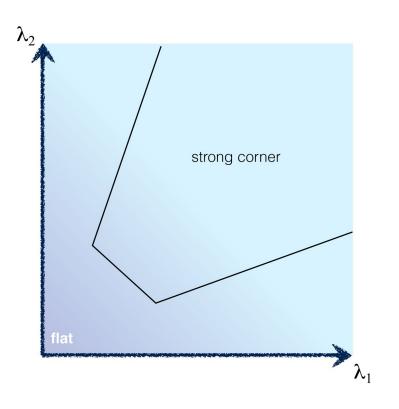
$$M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$
$$f(\Delta x, \Delta y) \approx (\Delta x \quad \Delta y) M \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$$

 $\lambda_1\,$ X direction gradient

Y direction gradient



• Define a score to detect corners



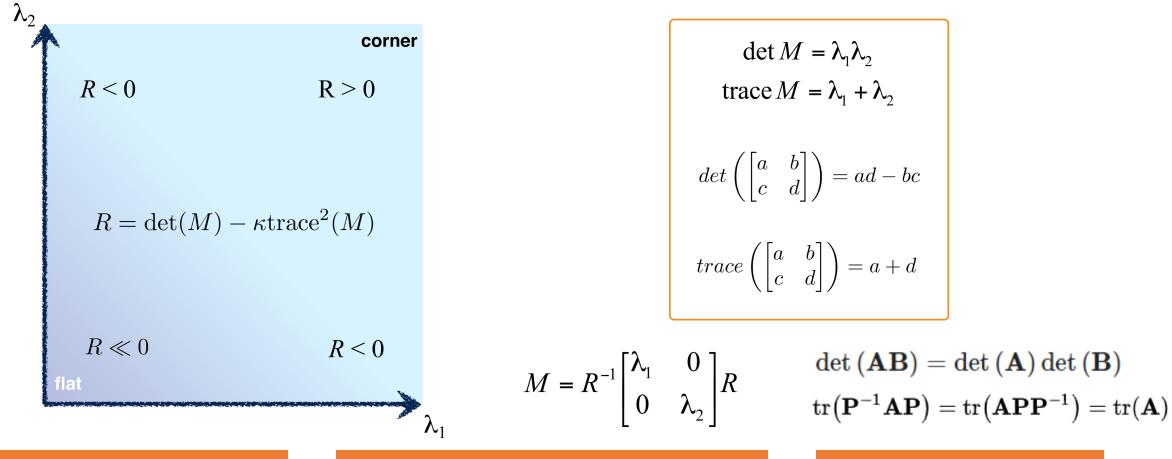
Option 1 Kanade & Tomasi (1994) $R=\min(\lambda_1,\lambda_2)$

Option 2 Harris & Stephens (1988) $R = \lambda_1 \lambda_2 - \kappa (\lambda_1 + \lambda_2)^2$

Can compute this more efficiently...

Define a score to detect corners

$$R = \lambda_1 \lambda_2 - \kappa (\lambda_1 + \lambda_2)^2$$



1. Compute x and y derivatives of image

$$I_x = G_{\sigma}^x * I$$
 $I_y = G_{\sigma}^y * I$ Sobel filter

2. Compute products of derivatives at every pixel

$$I_{x^2} = I_x \cdot I_x \qquad \qquad I_{y^2} = I_y \cdot I_y \qquad \qquad I_{xy} = I_x \cdot I_y$$

3. Compute the sums of products of derivatives at each pixel

Gaussian filter

$$S_{x^2} = G_{\sigma'} * I_{x^2}$$
 $S_{y^2} = G_{\sigma'} * I_{y^2}$ $S_{xy} = G_{\sigma'} * I_{xy}$

3. Determine the matrix at every pixel

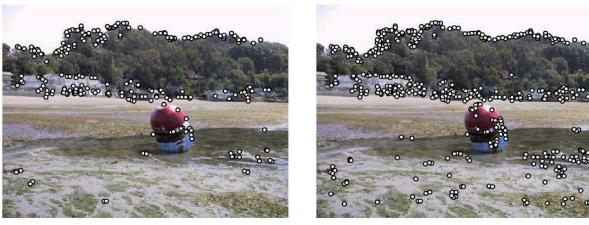
$$M(x, y) = \begin{bmatrix} S_{x^2}(x, y) & S_{xy}(x, y) \\ S_{xy}(x, y) & S_{y^2}(x, y) \end{bmatrix}$$

4. Compute the response of the detector at each pixel

$$R = \det M - k (\operatorname{trace} M)^2$$

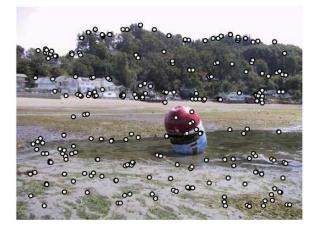
5. Threshold on R and perform non-maximum suppression

Non-Maximum Suppression (NMS)



(a) Strongest 250

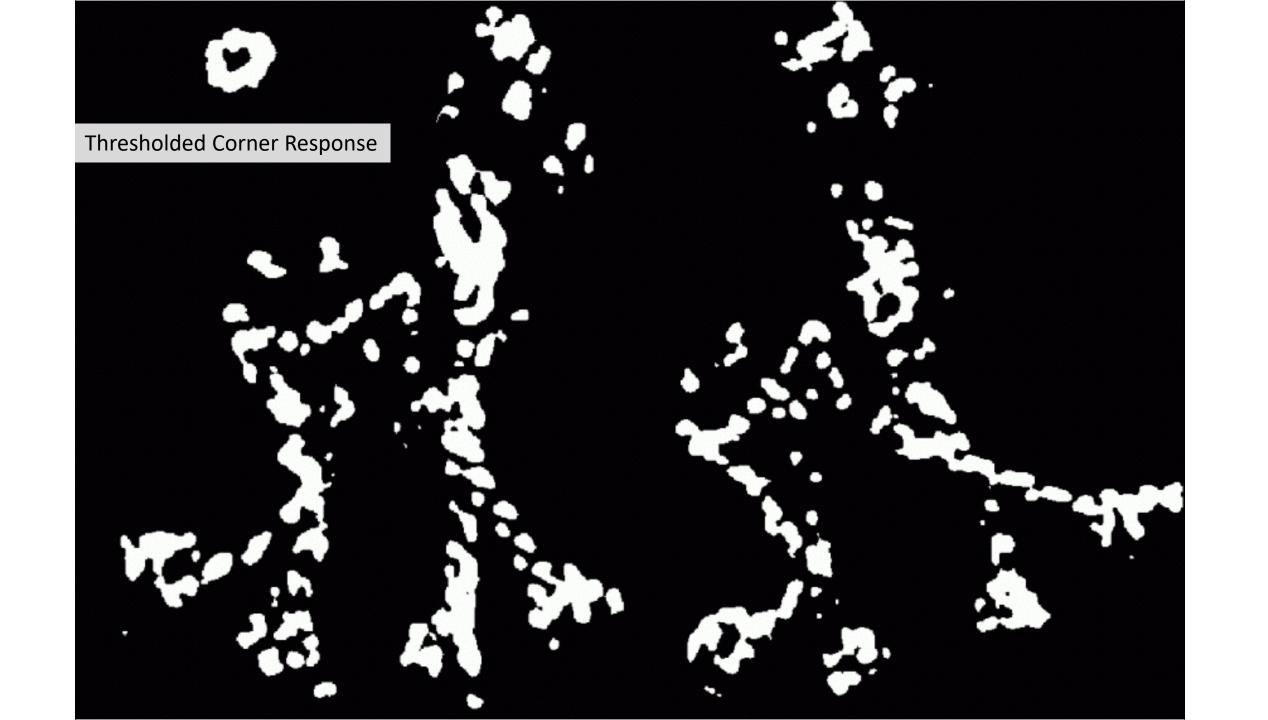
(b) Strongest 500



(c) ANMS 250, r = 24

(d) ANMS 500, r = 16

Adaptive non-maximal suppression Suppression radius r



NMS

S

Further Reading

- Section 3.2, 7.1, Computer Vision, Richard Szeliski
- A COMBINED CORNER AND EDGE DETECTOR. Chris Harris & Mike Stephens. <u>http://www.bmva.org/bmvc/1988/avc-88-023.pdf</u>