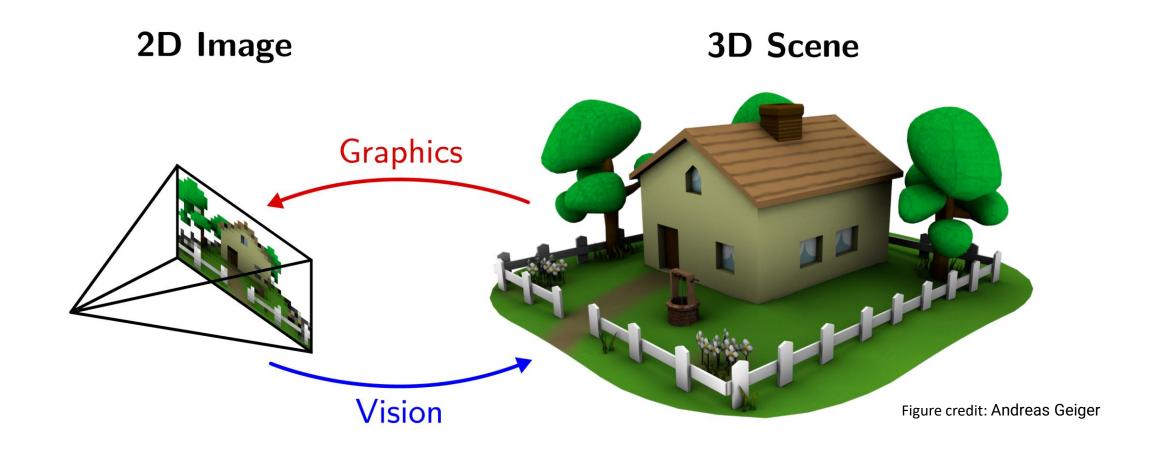


CS 6384 Computer Vision
Professor Yu Xiang
The University of Texas at Dallas

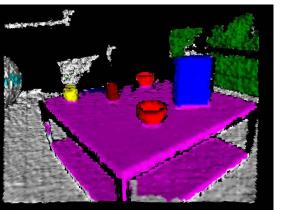
# Computer Graphics and Computer Vision



# Visual Rendering

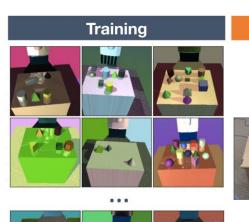
3D reconstruction



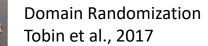


KinectFusion Newcombe et al. 2011

Synthetic data for training



Test



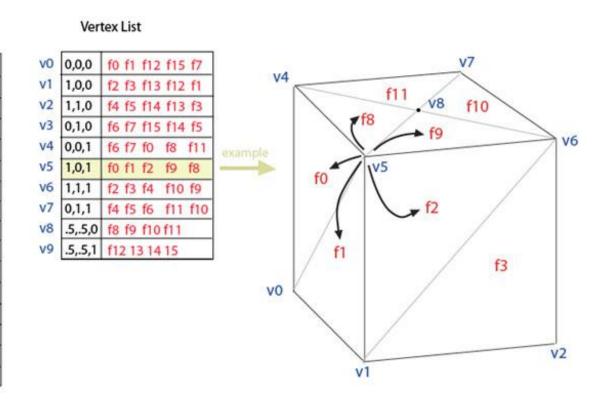




iGibson Xia et al. 2021

# 3D Triangle Meshes

#### **Face-Vertex Meshes**



From Wikipedia

**Face List** 

v0 v4 v5

v0 v5 v1

v1 v5 v6

v1 v6 v2

v2 v6 v7

v2 v7 v3

v3 v7 v4

v3 v4 v0

v8 v5 v4

v8 v6 v5

v8 v7 v6

v8 v4 v7 v9 v5 v4 v9 v6 v5

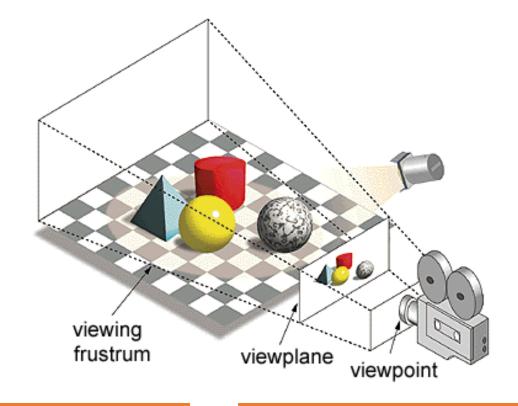
v9 v7 v6 v9 v4 v7

# Visual Rendering

Converting 3D scene descriptions into 2D images

- The graphics pipeline
  - Geometry + transformations
  - Cameras and viewing
  - Lighting and shading
  - Rasterization
  - Texturing

From Computer Desktop Encyclopedia Reprinted with permission. © 1998 Intergraph Computer Systems

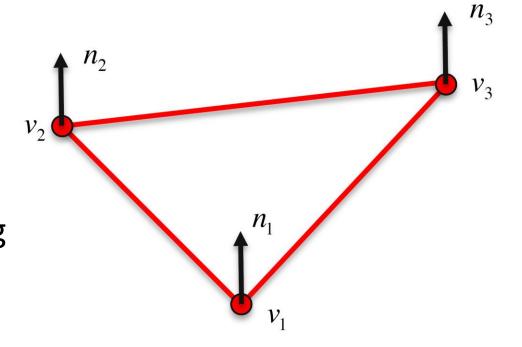


#### Primitives

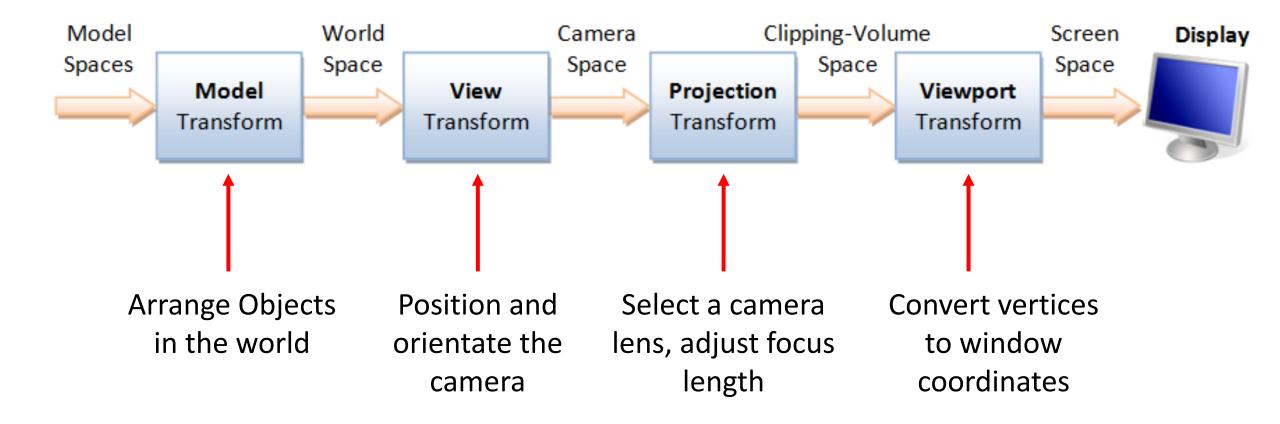
Vertex: 3D point v(x, y, z)

• Triangle (Face): 3D vertices

• Normal: 3D vector per vertex describing surface orientation  $\mathbf{n}=(n_x,n_y,n_z)$ 

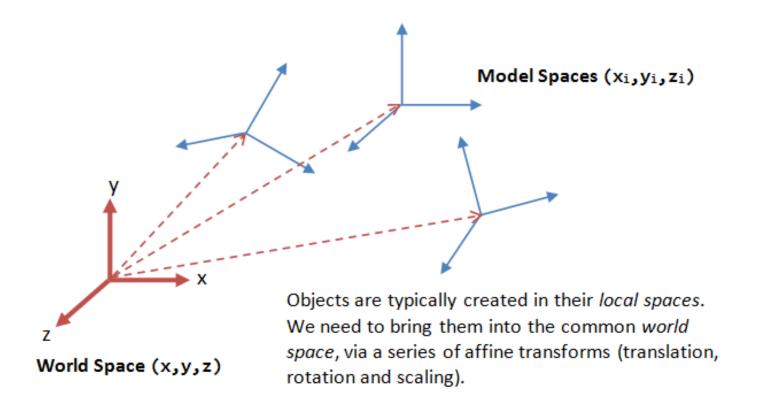


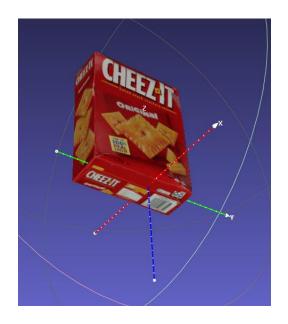
#### Vertex Transforms



https://www3.ntu.edu.sg/home/ehchua/programming/opengl/CG\_BasicsTheory.html

- Transform each vertex from object coordinates to world coordinates
  - 3D rotation and 3D translation





Object coordinates

• translation 
$$T(d) = \begin{pmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

scale 
$$S(s) = \begin{pmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

• rotation 
$$R_z(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Vertex 
$$egin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

• rotation 
$$R_z(\theta) = \begin{pmatrix} \cos\theta & -\sin\theta & 0 & 0 \\ \sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
  $R_x = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$   $R_y = \begin{pmatrix} \cos\theta & 0 & \sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ 

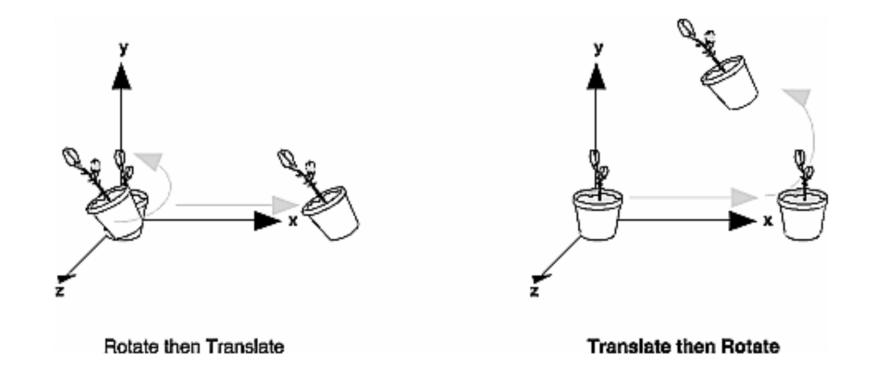
Combine transformations

$$v' = T \cdot S \cdot R_z \cdot R_x \cdot T \cdot v$$

Inverse

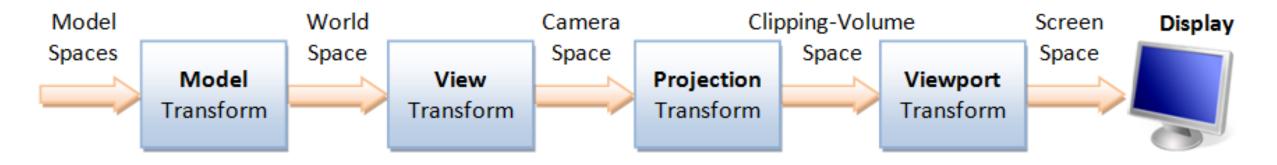
$$v = \left(T \cdot S \cdot R_z \cdot R_x \cdot T\right)^{-1} \cdot v'$$
$$= T^{-1} \cdot R_x^{-1} \cdot R_z^{-1} \cdot S^{-1} \cdot T^{-1} \cdot v'$$

Rotation and translation are not commutative (the order matters)



Transformation from world coordinate to camera or view coordinates

$$\mathbf{X}_{\mathrm{cam}} = R\mathbf{X} + \mathbf{t}$$
 
$$\begin{bmatrix} R & \mathbf{t} \\ 0 & 1 \end{bmatrix}$$
 4x4



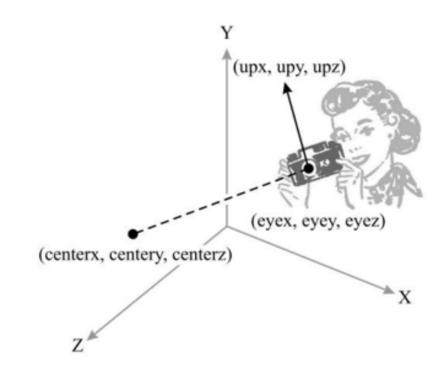
2/2/2022

#### Another way to specific the camera

• eye position 
$$eye = \begin{pmatrix} eye_x \\ eye_y \\ eye_z \end{pmatrix}$$

• reference position  $center = \begin{bmatrix} center_x \\ center_y \\ center_z \end{bmatrix}$ 

• up vector 
$$up = \begin{pmatrix} up_x \\ up_y \\ up_z \end{pmatrix}$$



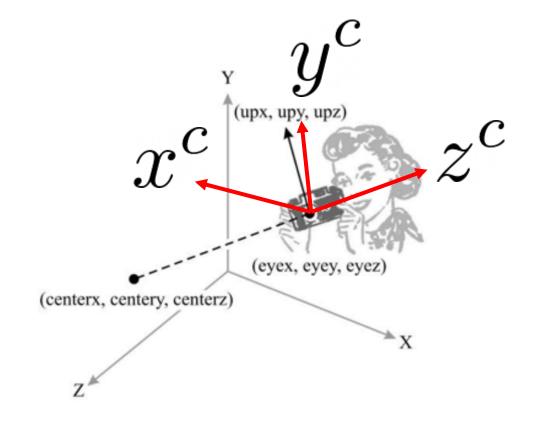
Compute 3 vectors for the camera

$$z^{c} = \frac{eye - center}{||eye - center||}$$

$$x^{c} = \frac{up \times z^{c}}{\|up \times z^{c}\|}$$

$$y^c = z^c \times x^c$$

This can make sure y-axis is perpendicular to both x and z



$$R^c = \begin{bmatrix} x^c & y^c & z^c \end{bmatrix}$$

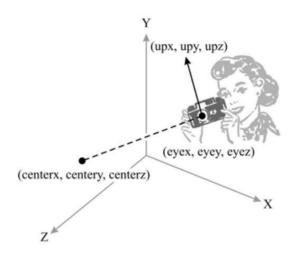
Rotation from eye to world

Translation into eye position followed by rotation

$$M = R \cdot T(-e) = \begin{pmatrix} x_x^c & x_y^c & x_z^c & 0 \\ y_x^c & y_y^c & y_z^c & 0 \\ z_x^c & z_y^c & z_z^c & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & -eye_x \\ 0 & 1 & 0 & -eye_y \\ 0 & 0 & 1 & -eye_z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$R^{c} = \begin{bmatrix} x^{c} & y^{c} & z^{c} \end{bmatrix}$$

$$= \begin{bmatrix} x_{x}^{c} & x_{y}^{c} & x_{z}^{c} & -(x_{x}^{c}eye_{x} + x_{y}^{c}eye_{y} + x_{z}^{c}eye_{z}) \\ y_{x}^{c} & y_{y}^{c} & y_{z}^{c} & -(y_{x}^{c}eye_{x} + y_{y}^{c}eye_{y} + y_{z}^{c}eye_{z}) \\ z_{x}^{c} & z_{y}^{c} & z_{z}^{c} & -(z_{x}^{c}eye_{x} + z_{y}^{c}eye_{y} + z_{z}^{c}eye_{z}) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$



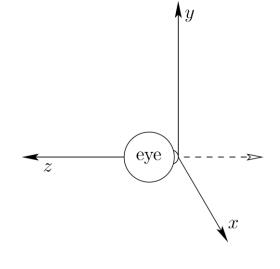
$$z^{c} = \frac{eye - center}{||eye - center||}$$

$$x^{c} = \frac{up \times z^{c}}{\left\| up \times z^{c} \right\|}$$

$$y^c = z^c \times x^c$$

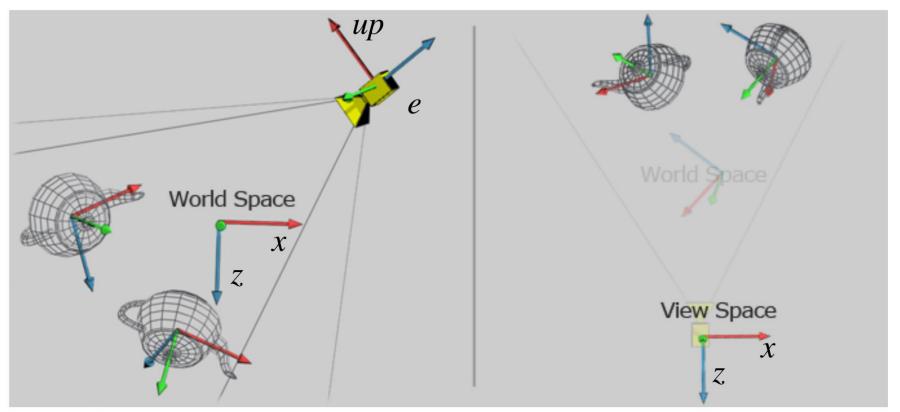
 Most graphics APIs has a function called lookat to compute the view transform matrix

• In camera coordinates, the camera looks into negative z



• *Modelview matrix* is the combined model and view transformation matrix

• In camera coordinates, the camera looks into negative z

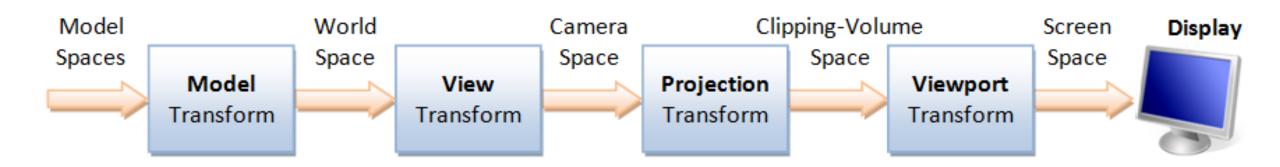


vodacek.zvb.cz

# Projection Transform

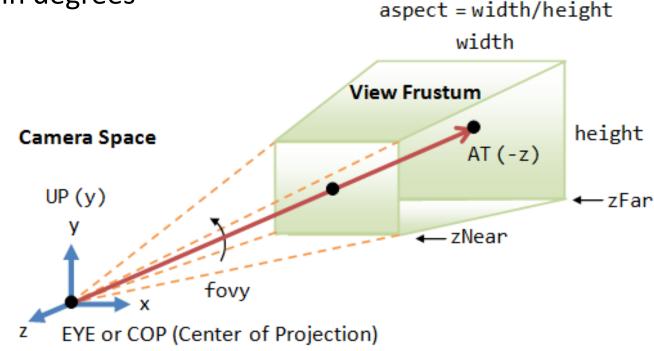
- Similar to choose lens and sensor of camera, specify field of view and aspect of camera
  - Perspective projection
  - Orthographic projection

Camera model 
$$K = \begin{bmatrix} f_x & 0 & p_x \\ 0 & f_y & p_y \\ 0 & 0 & 1 \end{bmatrix}$$



# Projection Transform: Perspective Projection

- View frustum in perspective view (four parameters)
  - Fovy: total vertical angle of view in degrees
  - Aspect: ratio of width/height
  - zNear: near clipping plane
  - zFar: far clipping plane



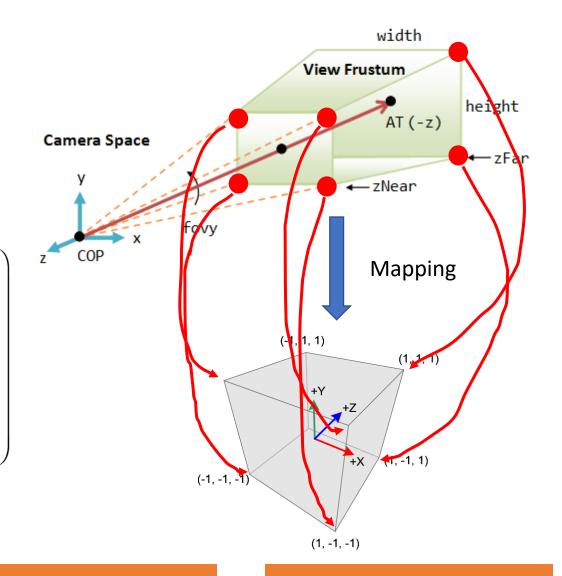
**Perspective Projection**: The camera's view frustum is specified via 4 view parameters: fovy, aspect, zNear and zFar.

# Projection Transform: Perspective Projection

Clipping-Volume Cuboid 2x2x2

$$f = \cot(fovy/2) = \frac{zNear}{h/2}$$

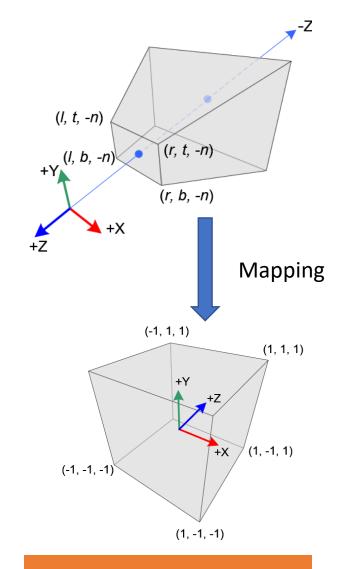
$$M_{proj} = \begin{pmatrix} \frac{f}{aspect} & 0 & 0 & 0\\ 0 & f & 0 & 0\\ 0 & 0 & \frac{zFar + zNear}{zFar - zNear} & \frac{2 \cdot zFar \cdot zNear}{zFar - zNear}\\ 0 & 0 & -1 & 0 \end{pmatrix}$$
Flip z



# Projection Transform: Perspective Projection

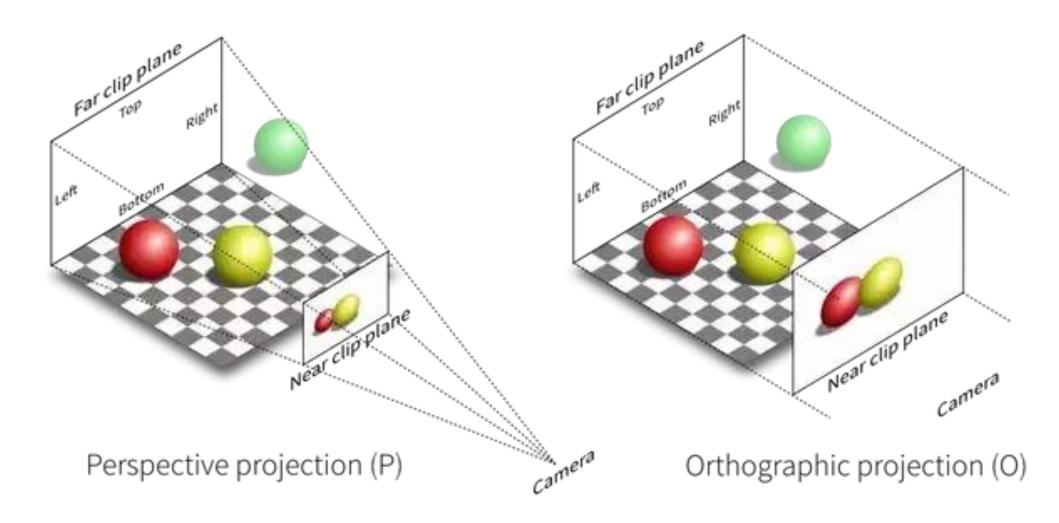
 Specify the view frustum by left (I), right (r), bottom (b), and top (t) corner coordinates on near clipping plane (at zNear)

$$M_{proj} = \begin{pmatrix} \frac{2 \cdot zNear}{r - l} & 0 & \frac{r + l}{r - l} & 0 \\ 0 & \frac{2 \cdot zNear}{t - b} & \frac{t + b}{t - b} & 0 \\ 0 & 0 & -\frac{zFar + zNear}{zFar - zNear} & -\frac{2 \cdot zFar \cdot zNear}{zFar - zNear} \\ 0 & 0 & -1 & 0 \end{pmatrix}$$



2/2/2022

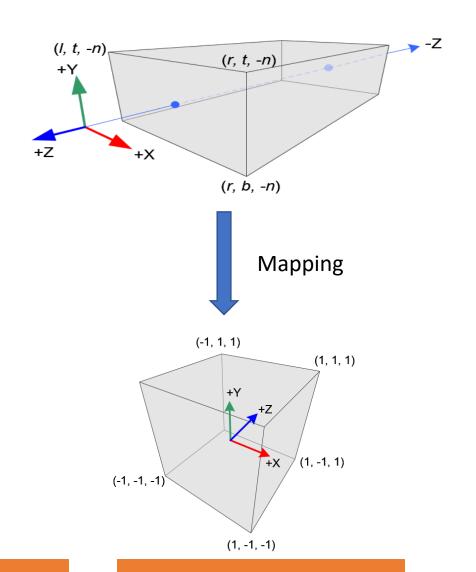
# Orthographic Projection v.s. Perspective Projection



# Projection Transform: Orthographic Projection

 Camera is placed very far away (parallel projection)

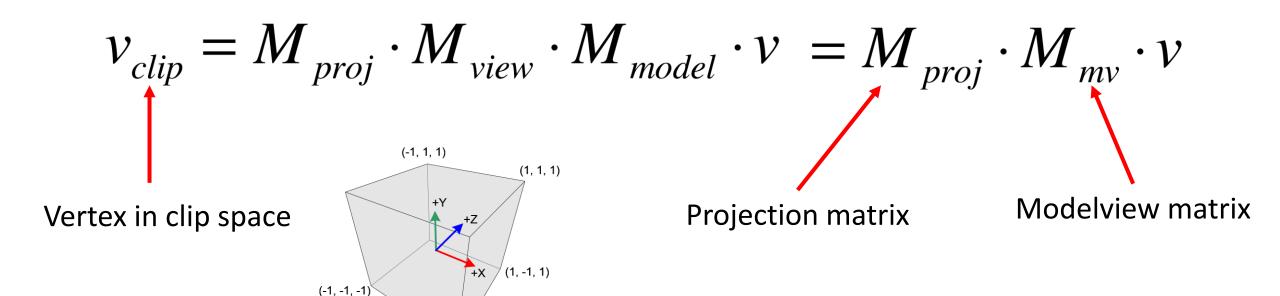
$$M_{proj} = \begin{pmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{-2}{f-n} & -\frac{f+n}{f-n} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$



# Modelview Projection Matrix

(1, -1, -1)

Combine all the transformations



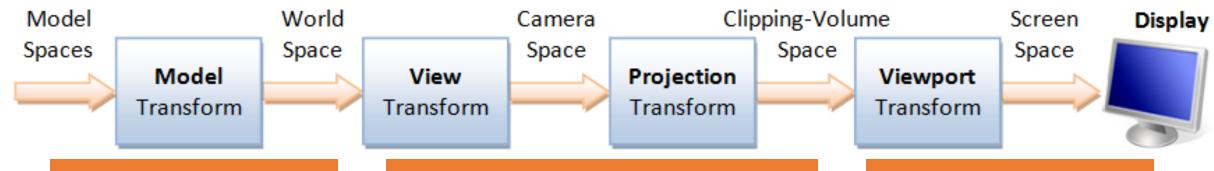
# Viewport Transform

Normalized Device Coordinate (NDC)

$$v_{clip} = \begin{pmatrix} x_{clip} \\ y_{clip} \\ z_{clip} \\ w_{clip} \end{pmatrix} \longrightarrow v_{NDC} = \begin{pmatrix} x_{clip} / w_{clip} \\ y_{clip} / w_{clip} \\ z_{clip} / w_{clip} \\ 1 \end{pmatrix} \in (-1,1)$$

vertex in clip space

vertex in NDC



2/2/2022

# Viewport Transform

- Define window as viewpoint (x, y, width, height)
  - (x, y) lower left corner of the viewport rectangle (default is (0, 0))
  - Width, height size of viewport rectangle in pixels

$$v_{NDC} = \begin{pmatrix} x_{clip} / w_{clip} \\ y_{clip} / w_{clip} \\ z_{clip} / w_{clip} \\ 1 \end{pmatrix} \longrightarrow$$

vertex in NDC

$$v_{window} = \begin{pmatrix} x_{window} \\ y_{window} \\ z_{window} \\ 1 \end{pmatrix} \in \begin{pmatrix} 0, width \end{pmatrix}$$

$$\in \begin{pmatrix} 0, height \end{pmatrix}$$

vertex in window coords

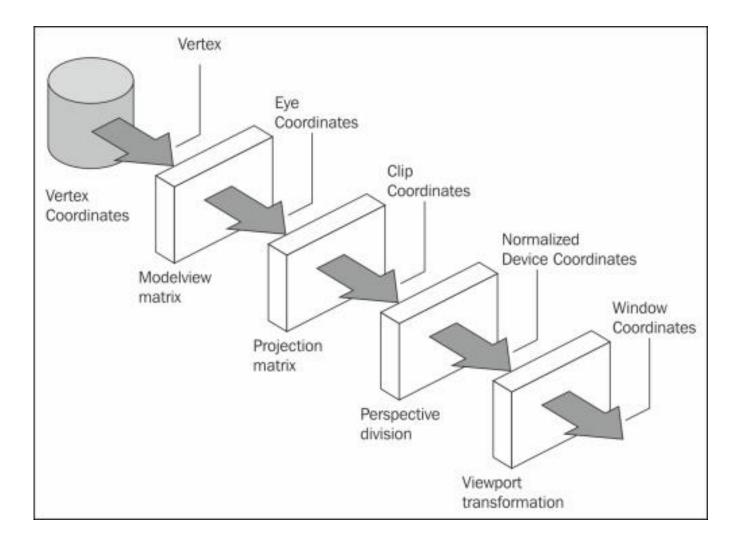
$$v_{NDC} = \begin{pmatrix} x_{clip} / w_{clip} \\ y_{clip} / w_{clip} \\ z_{clip} / w_{clip} \\ 1 \end{pmatrix} \longrightarrow v_{window} = \begin{pmatrix} x_{window} \\ y_{window} \\ z_{window} \\ 1 \end{pmatrix} \in (0, width)$$

$$v_{window} = \begin{pmatrix} x_{window} \\ y_{window} \\ z_{window} \\ 1 \end{pmatrix} \in (0, height)$$

$$v_{window} = \begin{pmatrix} x_{window} \\ y_{window} \\ z_{window} \\ 1 \end{pmatrix} \in (0, height)$$

$$v_{window} = \begin{pmatrix} x_{window} \\ y_{window} \\ z_{window} \\ 1 \end{pmatrix} + y_{window} = \begin{pmatrix} x_{window} \\ y_{window} \\ z_{window} \\ 1 \end{pmatrix} + y_{window} = \begin{pmatrix} x_{window} \\ z_{window} \\ 1 \end{pmatrix} + y_{window} = \begin{pmatrix} x_{window} \\ z_{window} \\ 1 \end{pmatrix} + y_{window} = \begin{pmatrix} x_{window} \\ z_{window} \\ 1 \end{pmatrix} + y_{window} = \begin{pmatrix} x_{window} \\ z_{window} \\ 1 \end{pmatrix} + y_{window} = \begin{pmatrix} x_{window} \\ z_{window} \\ 1 \end{pmatrix} + y_{window} = \begin{pmatrix} x_{window} \\ z_{window} \\ 1 \end{pmatrix} + y_{window} = \begin{pmatrix} x_{window} \\ z_{window} \\ 1 \end{pmatrix} + y_{window} = \begin{pmatrix} x_{window} \\ z_{window} \\ 1 \end{pmatrix} + y_{window} = \begin{pmatrix} x_{window} \\ z_{window} \\ 1 \end{pmatrix} + y_{window} = \begin{pmatrix} x_{window} \\ z_{window} \\ 1 \end{pmatrix} + y_{window} = \begin{pmatrix} x_{window} \\ z_{window} \\ 1 \end{pmatrix} + y_{window} = \begin{pmatrix} x_{window} \\ z_{window} \\ 1 \end{pmatrix} + y_{window} = \begin{pmatrix} x_{window} \\ z_{window} \\ 1 \end{pmatrix} + y_{window} = \begin{pmatrix} x_{window} \\ z_{window} \\ 1 \end{pmatrix} + y_{window} = \begin{pmatrix} x_{window} \\ z_{window} \\ 1 \end{pmatrix} + y_{window} = \begin{pmatrix} x_{window} \\ z_{window} \\ 1 \end{pmatrix} + y_{window} = \begin{pmatrix} x_{window} \\ z_{window} \\ 1 \end{pmatrix} + y_{window} = \begin{pmatrix} x_{window} \\ z_{window} \\ 1 \end{pmatrix} + y_{window} = \begin{pmatrix} x_{window} \\ z_{window} \\ 1 \end{pmatrix} + y_{window} = \begin{pmatrix} x_{window} \\ z_{window} \\ 1 \end{pmatrix} + y_{window} = \begin{pmatrix} x_{window} \\ z_{window} \\ 1 \end{pmatrix} + y_{window} = \begin{pmatrix} x_{window} \\ z_{window} \\ 1 \end{pmatrix} + y_{window} = \begin{pmatrix} x_{window} \\ z_{window} \\ 1 \end{pmatrix} + y_{window} = \begin{pmatrix} x_{window} \\ z_{window} \\ 1 \end{pmatrix} + y_{window} = \begin{pmatrix} x_{window} \\ z_{window} \\ 1 \end{pmatrix} + y_{window} = \begin{pmatrix} x_{window} \\ z_{window} \\ 1 \end{pmatrix} + y_{window} = \begin{pmatrix} x_{window} \\ z_{window} \\ 1 \end{pmatrix} + y_{window} = \begin{pmatrix} x_{window} \\ z_{window} \\ 2 \end{pmatrix} + y_{window} = \begin{pmatrix} x_{window} \\ z_{window} \\ 2 \end{pmatrix} + y_{window} = \begin{pmatrix} x_{window} \\ z_{window} \\ 2 \end{pmatrix} + y_{window} = \begin{pmatrix} x_{window} \\ z_{window} \\ 2 \end{pmatrix} + y_{window} = \begin{pmatrix} x_{window} \\ z_{window} \\ 2 \end{pmatrix} + y_{window} = \begin{pmatrix} x_{window} \\ z_{window} \\ 2 \end{pmatrix} + y_{window} = \begin{pmatrix} x_{window} \\ 2 \end{pmatrix} + y_{window} = \begin{pmatrix} x_{window} \\ 2 \end{pmatrix}$$

# Vertex Transform Pipeline





# Further Reading

• 3D graphics with OpenGL, Basic Theory

https://www3.ntu.edu.sg/home/ehchua/programming/opengl/CG\_BasicsTheory.html

• Textbook: Shirley and Marschner "Fundamentals of Computer Graphics", AK Peters, 2009