Geometric Primitives and Transformations
 CS 6384 Computer Vision
 Professor Yu Xiang
 The University of Texas at Dallas

How are Images Generated?

3D World

Geometry in Image Generation

3D World

2D Points and 3D Points

- A 2D point is usually used to indicate pixel coordinates of a pixel

$$
\mathbf{x}=(x, y) \in \mathcal{R}^{2} \quad \mathbf{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- A 3D point in the real world

$$
\mathbf{x}=(x, y, z) \in \mathcal{R}^{3} \quad \mathbf{x}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

Homogeneous Coordinates

$$
\begin{aligned}
& (x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
& \text { homogeneous image } \\
& \text { coordinates }
\end{aligned}
$$

$$
\begin{gathered}
(x, y, z) \Rightarrow\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \\
\text { homogeneous scene } \\
\text { coordinates }
\end{gathered}=w\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

Conversion

$$
\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w)
$$

$$
\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right] \Rightarrow(x / w, y / w, z / w)
$$

2D Lines

- A line in a 2D plane $a x+b y+c=0 \quad \mathbf{x}=\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$
- It is parameterized by $\mathbf{l}=(a, b, c)^{T}{ }_{\text {Homogeneous Coordinates }}$

$$
k(a, b, c)^{T} \text { represents the same line for nonzero } \mathrm{k}
$$

- Line equation

$$
\mathbf{x}^{T} \mathbf{l}=0 \quad \mathbf{x}=\left[\begin{array}{l}
u \\
y \\
1
\end{array}\right] \quad \mathbf{l}=\left[\begin{array}{l}
w \\
c
\end{array}\right]
$$

2D Lines

$$
\begin{aligned}
& \mathbf{l}=(a, b, c) \\
& \text { Normalize by } \sqrt{a^{2}+b^{2}}
\end{aligned}
$$

$\mathbf{l}=\left(\hat{n}_{x}, \hat{n}_{y}, d\right)=(\hat{\mathbf{n}}, d)$ Normal vector $\|\hat{\mathbf{n}}\|=1$

Distance to the origin d
$\hat{\mathbf{n}}=\left(\hat{n}_{x}, \hat{n}_{y}\right)=(\cos \theta, \sin \theta)$
polar coordinates (θ, d)

Intersection of 2D Lines

$$
\mathbf{l}=(a, b, c)^{T} \quad \mathbf{l}^{\prime}=\left(a^{\prime}, b^{\prime}, c^{\prime}\right)^{T}
$$

The inesestionis $\mathbf{x}=\mathbf{l} \times \mathbf{l}^{\prime}$

$$
\begin{aligned}
& \mathbf{l} \cdot\left(\mathbf{l} \times \mathbf{l}^{\prime}\right)=\mathbf{l}^{\prime} \cdot\left(\mathbf{l} \times \mathbf{l}^{\prime}\right)=0 \\
& \mathbf{l}^{T} \mathbf{x}=\mathbf{l}^{\prime T} \mathbf{x}=0
\end{aligned}
$$

Vector cross product

```
\[
\mathbf{a} \times \mathbf{b}
\]
```


$$
\mathbf{a} \times \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \sin (\theta) \mathbf{n}
$$

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

Vector dot product
$\mathbf{a} \cdot \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta$
A scalar

A Line Joining two Points

$$
\mathbf{x}=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \quad \mathbf{x}^{\prime}=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]
$$

$$
\mathbf{l}=\mathrm{x} \times \mathrm{x}^{\prime}
$$

$$
\mathrm{x} \cdot\left(\mathrm{x} \times \mathrm{x}^{\prime}\right)=\mathrm{x}^{\prime} \cdot\left(\mathrm{x} \times \mathrm{x}^{\prime}\right)=0
$$

$$
\mathbf{x}^{T} \mathbf{l}=\mathbf{x}^{\prime T} \mathbf{l}=0
$$

Vector cross product

$$
\mathbf{a} \times \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \sin (\theta) \mathbf{n}
$$

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

Vector dot product

$$
\mathbf{a} \cdot \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta
$$

3D Plane

- A 3D plane equation $a x+b y+c z+d=0$
- It is parameterized by (a, b, c, d)
- Normal vector and distance

$$
\begin{aligned}
\mathbf{m} & =\left(\hat{n}_{x}, \hat{n}_{y}, \hat{n}_{z}, d\right)=(\hat{\mathbf{n}}, d) \\
\hat{\mathbf{n}} & =(\cos \theta \cos \phi, \sin \theta \cos \phi, \sin \phi)
\end{aligned}
$$

3D Lines

- Any point on the line is a linear combination of two points

$$
\mathbf{r}=(1-\lambda) \mathbf{p}+\lambda \mathbf{q}
$$

- Using a line direction

$$
\mathbf{r}=\mathbf{p}+\lambda \hat{\mathbf{d}}
$$

2D Transformations

2D Translation

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right] \quad \mathbf{x}^{\prime}=\mathbf{x}+\mathbf{t}
$$

Homogeneous coordinate

$$
\mathrm{x}^{\prime}=\left[\begin{array}{ll}
\mathbf{I} & \mathrm{t}
\end{array}\right] \overline{\mathrm{x}}
$$

$$
2 \times 3
$$

augmented vector $\overline{\mathbf{x}}=(x, y, 1)$

2D Euclidean Transformation

- 2D Rotation +2 D translation

$$
\mathbf{x}^{\prime}=\mathbf{R} \mathbf{x}+\mathbf{t} \quad \mathbf{R}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

orthonormal rotation matrix

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]} \\
& x^{\prime}=x \cos \theta-y \sin \theta \\
& y^{\prime}=x \sin \theta+y \cos \theta
\end{aligned}
$$

2D Euclidean Transformation

- 2D Rotation +2 D translation

$$
\mathbf{x}^{\prime}=\mathbf{R} \mathbf{x}+\mathbf{t} \quad \mathbf{R}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

$$
\begin{aligned}
& \mathbf{x}^{\prime}=\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right] \overline{\mathbf{x}} \\
& 2 \times 3 \\
& \overline{\mathbf{x}}=(x, y, 1)
\end{aligned}
$$

- Degree of freedom (DOF)
- The maximum number of logically independent values
- 2D Rotation?
- 2D Euclidean transformation?

2D Similarity Transformation

- Scaled 2D rotation +2 D translation

$$
\begin{aligned}
& \mathbf{x}^{\prime}=s \mathbf{R} \mathbf{x}+\mathbf{t} \quad \mathbf{R}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \\
& \mathbf{x}^{\prime}=\left[\begin{array}{ll}
s \mathbf{R} & \mathbf{t}
\end{array}\right] \overline{\mathbf{x}}=\left[\begin{array}{ccc}
a & -b & t_{x} \\
b & a & t_{y}
\end{array}\right] \overline{\mathbf{x}} \quad \overline{\mathbf{x}}=(x, y, 1)
\end{aligned}
$$

The similarity transform preserves angles between lines.

2D Affine Transformation

- Arbitrary 2×3 matrix

$$
\mathbf{x}^{\prime}=\mathbf{A} \overline{\mathbf{x}}
$$

$$
\overline{\mathbf{x}}=(x, y, 1)
$$

$$
\mathbf{x}^{\prime}=\left[\begin{array}{lll}
a_{00} & a_{01} & a_{02} \\
a_{10} & a_{11} & a_{12}
\end{array}\right] \overline{\mathbf{x}}
$$

Parallel lines remain parallel under affine transformations.

2D Projective Transformation

- Also called perspective transform or homography

$\tilde{\mathbf{x}}^{\prime}=\tilde{\mathbf{H}} \tilde{\mathbf{X}} \quad$ homogeneous coordinates

$3 \times 3 \quad \tilde{\mathbf{H}}$ is only defined up to a scale

$$
x^{\prime}=\frac{h_{00} x+h_{01} y+h_{02}}{h_{20} x+h_{21} y+h_{22}} \quad \text { and } \quad y^{\prime}=\frac{h_{10} x+h_{11} y+h_{12}}{h_{20} x+h_{21} y+h_{22}}
$$

Perspective transformations preserve straight lines

Hierarchy of 2D Transformations

Transformation	Matrix	\# DoF	Preserves	Icon
translation	$\left[\begin{array}{ll}\mathbf{I} & \mathbf{t}\end{array}\right]_{2 \times 3}$	2	orientation	
rigid (Euclidean)	$\left[\begin{array}{ll}\mathbf{R} & \mathbf{t}\end{array}\right]_{2 \times 3}$	3	lengths	
similarity	$\left[\begin{array}{ll}\mathbf{R} & \mathbf{t}]_{2 \times 3}\end{array}\right.$	4	angles	
affine	$[\mathbf{A}]_{2 \times 3}$	6	parallelism	
projective	$[\tilde{\mathbf{H}}]_{3 \times 3}$	8	straight lines	

3D Translation

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]+\left[\begin{array}{c}
t_{x} \\
t_{y} \\
t_{z}
\end{array}\right] \quad \mathbf{x}^{\prime}=\mathbf{x}+\mathbf{t}
$$

$$
\begin{gathered}
\mathbf{x}^{\prime}=\left[\begin{array}{ll}
\mathbf{I} & \mathbf{t}
\end{array}\right] \overline{\mathrm{x}} \\
3 \times 4
\end{gathered}
$$

augnened vector $\overline{\mathbf{x}}=(x, y, z, 1)$

3D Euclidean Transformation SE(3)

- 3D Rotation + 3D translation

$$
\begin{aligned}
\mathbf{x}^{\prime} & =\mathbf{R} \mathbf{x}+\mathbf{t} \\
\mathbf{x}^{\prime} & =\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right] \overline{\mathbf{x}} \\
& 3 \times 4 \\
\overline{\mathbf{x}} & =(x, y, z, 1)
\end{aligned}
$$

orthonormal rotation matrix
$\mathbf{R} \mathbf{R}^{T}=\mathbf{I}$ and $|\mathbf{R}|=1$
3×3
We will focus on 3D rotations in next lecture.

3D Similarity Transformation

- Scaled 3D rotation + 3D translation

$$
\begin{aligned}
\mathbf{x}^{\prime}= & s \mathbf{R} \mathbf{x}+\mathbf{t} \\
\mathbf{x}^{\prime}= & {\left[\begin{array}{ll}
s \mathbf{R} & \mathbf{t}
\end{array}\right] \overline{\mathbf{x}} \quad \overline{\mathbf{x}}=(x, y, z, 1) } \\
& 3 \times 4
\end{aligned}
$$

This transformation preserves angles between lines and planes.

3D Affine Transformation

$$
\begin{gathered}
\mathbf{x}^{\prime}=\mathbf{A} \overline{\mathbf{x}} \quad \overline{\mathbf{x}}=(x, y, z, 1) \\
\mathbf{x}^{\prime}=\left[\begin{array}{cccc}
a_{00} & a_{01} & a_{02} & a_{03} \\
a_{10} & a_{11} & a_{12} & a_{13} \\
a_{20} & a_{21} & a_{22} & a_{23}
\end{array}\right] \overline{\mathbf{x}} \\
3 \times 4
\end{gathered}
$$

Parallel lines and planes remain parallel under affine transformations.

3D Projective Transformation

- Also called 3D perspective transform or homography

$$
\begin{aligned}
\tilde{\mathbf{x}}^{\prime}=\tilde{\mathbf{M}} \tilde{\mathbf{x}} & \\
& \text { homogeneous coordinates } \\
4 \times 4 & \tilde{\mathbf{H}} \quad \text { is only defined up to a scale }
\end{aligned}
$$

- Perspective transformations preserve straight lines

3D Transformations

Transformation	Matrix	\# DoF	Preserves	Icon
translation	$\left[\begin{array}{ll}\mathbf{I} & \mathbf{t}\end{array}\right]_{3 \times 4}$	3	orientation	
rigid (Euclidean)	$\left[\begin{array}{ll}\mathbf{R} & \mathbf{t}\end{array}\right]_{3 \times 4}$	6	lengths	
similarity	$[s \mathbf{R}$	$\mathbf{t}]_{3 \times 4}$	7	angles
affine	$[\mathbf{A}]_{3 \times 4}$	12	parallelism	
projective	$[\tilde{\mathbf{H}}]_{4 \times 4}$	15	straight lines	

Further Reading

- Section 2.1, Computer Vision, Richard Szeliski
- Chapter 2 and 3, Multiple View Geometry in Computer Vision, Richard Hartley and Andrew Zisserman

