Geometric Primitives and Transformations

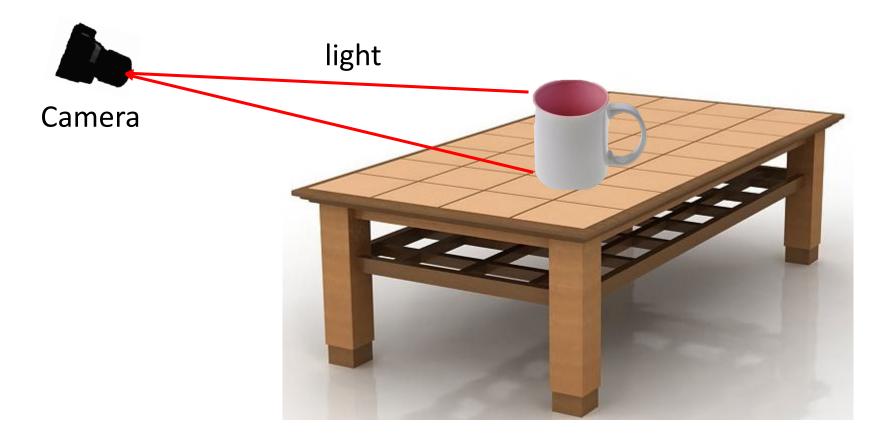
CS 6384 Computer Vision

Professor Yu Xiang

The University of Texas at Dallas

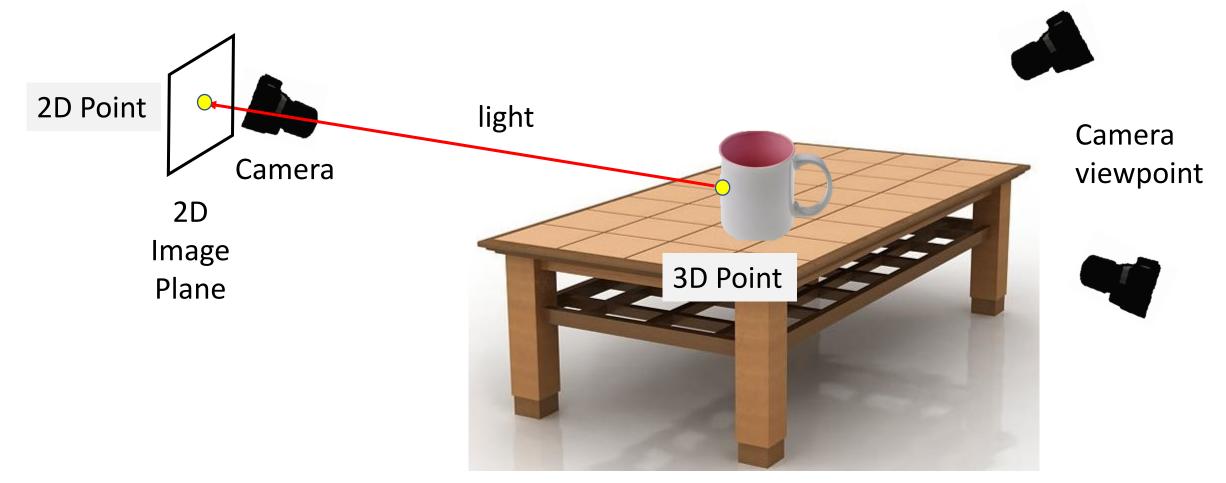
NIV

How are Images Generated?



3D World

Geometry in Image Generation



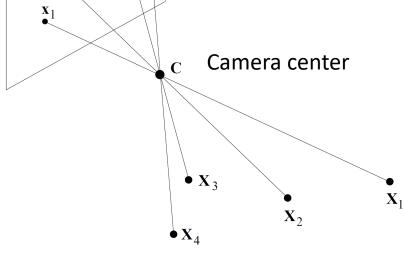
3D World

2D Points and 3D Points

image plane

• A 2D point is usually used to indicate pixel coordinates of a pixel

$$\mathbf{x} = (x, y) \in \mathcal{R}^2 \qquad \mathbf{x} =$$



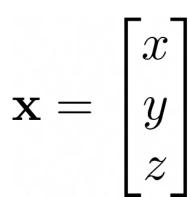
 $\mathbf{\mathbf{v}} \mathbf{X}_{\mathbf{3}}$

X

• x₂

• A 3D point in the real world

$$\mathbf{x} = (x, y, z) \in \mathcal{R}^3$$



 ${\mathcal X}$

 \boldsymbol{y}

Homogeneous Coordinates

$$(x, y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \qquad (x, y, z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = w \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$
homogeneous image
coordinates coordinates Up to scale

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w)$$

$$\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

2D Lines

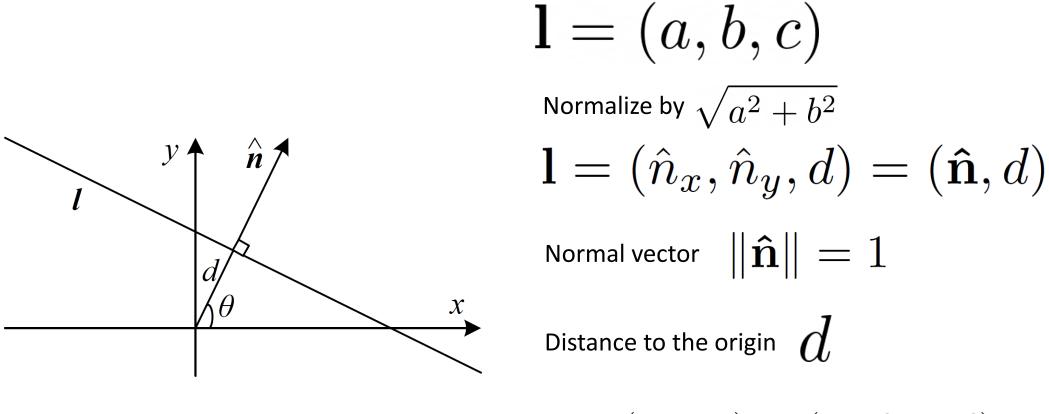
- A line in a 2D plane ax + by + c = 0 $\mathbf{x} = \begin{vmatrix} x \\ y \\ 1 \end{vmatrix}$
- It is parameterized by $\, {f l} = (a,b,c)^T\,$ Homogeneous Coordinates

 $k(a,b,c)^T$ represents the same line for nonzero k

• Line equation $\begin{bmatrix} x \end{bmatrix}$ $\begin{bmatrix} a \end{bmatrix}$

$$\mathbf{x}^T \mathbf{l} = 0 \quad \mathbf{x} = \begin{bmatrix} y \\ 1 \end{bmatrix} \quad \mathbf{l} = \begin{bmatrix} b \\ c \end{bmatrix}$$

2D Lines

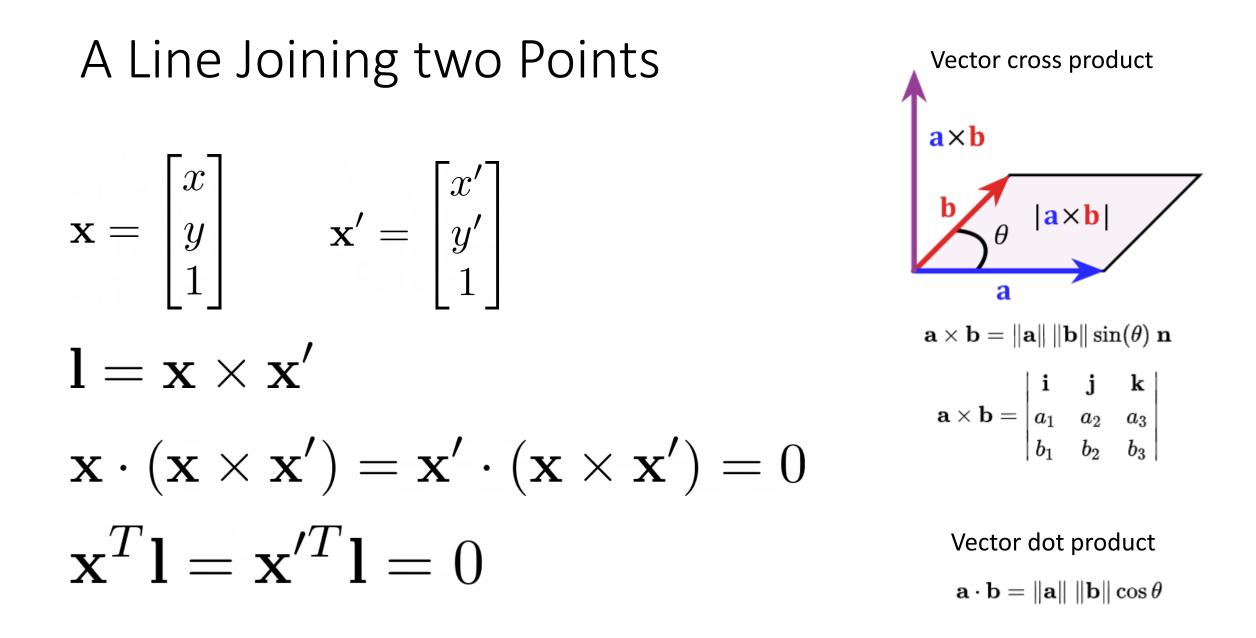


 $\hat{\mathbf{n}} = (\hat{n}_x, \hat{n}_y) = (\cos \theta, \sin \theta)$ polar coordinates (θ, d)

Yu Xiang

Intersection of 2D Lines Vector cross product **a**×**b** $\mathbf{l} = (a, b, c)^T$ $\mathbf{l}' = (a', b', c')^T$ |<mark>a×b</mark>| The intersection is $\mathbf{x} = \mathbf{l} imes \mathbf{l}'$ a $\mathbf{a} \times \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \sin(\theta) \mathbf{n}$ $\mathbf{l} \cdot (\mathbf{l} \times \mathbf{l}') = \mathbf{l}' \cdot (\mathbf{l} \times \mathbf{l}') = 0$ $\mathbf{a} imes \mathbf{b} = egin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix}$ $\mathbf{l}^T \mathbf{x} = \mathbf{l}^T \mathbf{x} = 0$ Vector dot product $\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta$

A scalar

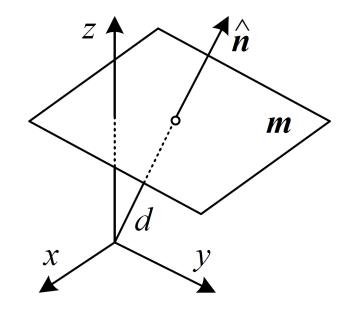


3D Plane

- A 3D plane equation ax + by + cz + d = 0
- It is parameterized by (a, b, c, d)
- Normal vector and distance

$$\mathbf{m} = (\hat{n}_x, \hat{n}_y, \hat{n}_z, d) = (\mathbf{\hat{n}}, d)$$

$$\mathbf{\hat{n}} = (\cos\theta\cos\phi, \sin\theta\cos\phi, \sin\phi)$$



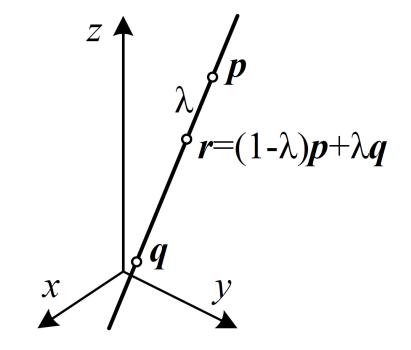
3D Lines

• Any point on the line is a linear combination of two points

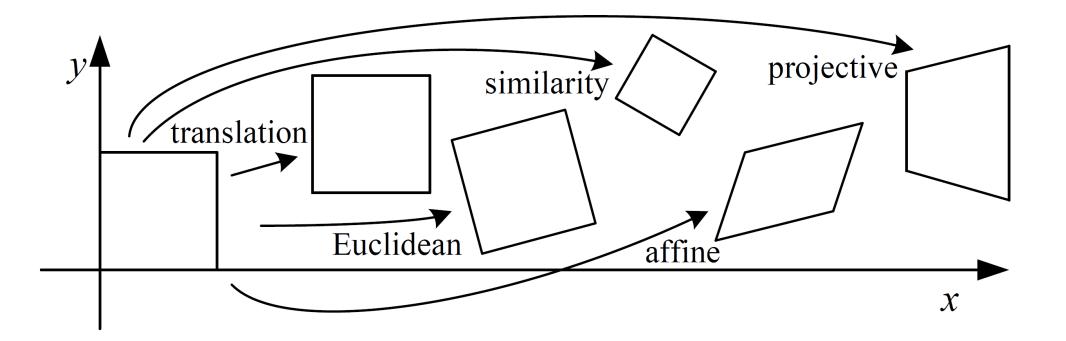
$$\mathbf{r} = (1 - \lambda)\mathbf{p} + \lambda\mathbf{q}$$

• Using a line direction

$$\mathbf{r} = \mathbf{p} + \lambda \mathbf{\hat{d}}$$



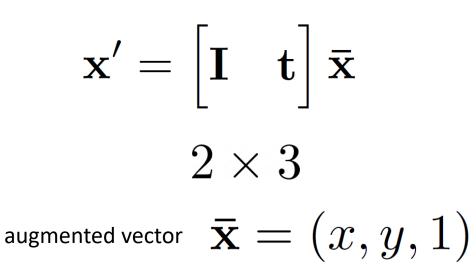
2D Transformations



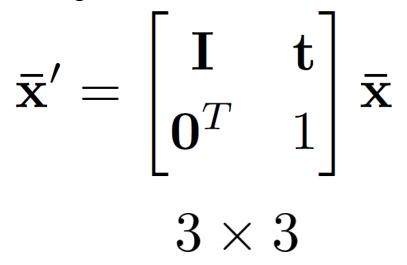
2D Translation

$$\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} x\\y \end{bmatrix} + \begin{bmatrix} t_x\\t_y \end{bmatrix}$$

$$\mathbf{x}' = \mathbf{x} + \mathbf{t}$$



Homogeneous coordinate



2D Euclidean Transformation

• 2D Rotation + 2D translation

$$\mathbf{x'} = \mathbf{R}\mathbf{x} + \mathbf{t} \quad \mathbf{R} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

 $y' = x \sin \theta + y \cos \theta$

y

$$\theta$$
x

orthonormal rotation matrix

 $\mathbf{R}\mathbf{R}^T = \mathbf{I} \text{ and } |\mathbf{R}| = 1$

2D Euclidean Transformation

• 2D Rotation + 2D translation

$$\mathbf{x'} = \mathbf{R}\mathbf{x} + \mathbf{t}$$
 $\mathbf{R} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$

$$\mathbf{x}' = \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \mathbf{\bar{x}}$$
$$2 \times 3$$

$$\bar{\mathbf{x}} = (x, y, 1)$$

- Degree of freedom (DOF)
 - The maximum number of logically independent values
 - 2D Rotation?
 - 2D Euclidean transformation?

2D Similarity Transformation

Scaled 2D rotation + 2D translation

$$\mathbf{x'} = s\mathbf{R}\mathbf{x} + \mathbf{t}$$
 $\mathbf{R} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$

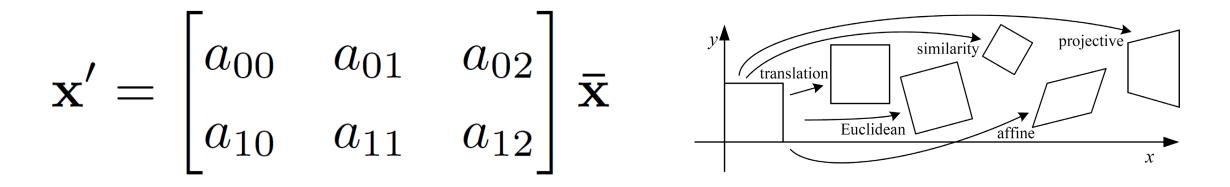
$$\mathbf{x}' = \begin{bmatrix} s\mathbf{R} & \mathbf{t} \end{bmatrix} \mathbf{\bar{x}} = \begin{bmatrix} a & -b & t_x \\ b & a & t_y \end{bmatrix} \mathbf{\bar{x}} \qquad \mathbf{\bar{x}} = (x, y, 1)$$

The similarity transform preserves angles between lines.

2D Affine Transformation

• Arbitrary 2x3 matrix

$$\mathbf{x'} = \mathbf{A}\mathbf{\bar{x}}$$
 $\mathbf{\bar{x}} = (x, y, 1)$



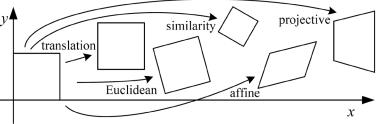
Parallel lines remain parallel under affine transformations.

2D Projective Transformation

• Also called perspective transform or homography

$$\mathbf{\tilde{x}'} = \mathbf{\tilde{H}}\mathbf{\tilde{x}} \qquad \text{homogeneous coordinates} \\ 3 \times 3 \quad \mathbf{\tilde{H}} \qquad \text{is only defined up to a scale} \\ x' = \frac{h_{00}x + h_{01}y + h_{02}}{h_{20}x + h_{21}y + h_{22}} \qquad \text{and} \qquad y' = \frac{h_{10}x + h_{11}y + h_{12}}{h_{20}x + h_{21}y + h_{22}}$$

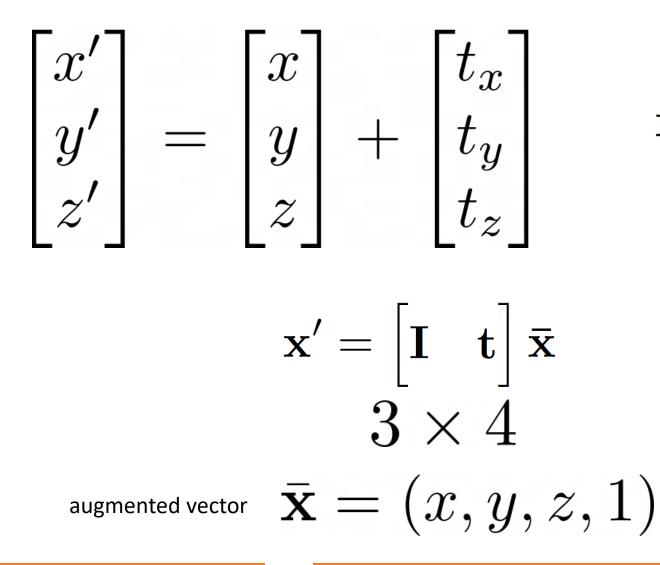
Perspective transformations preserve straight lines



Hierarchy of 2D Transformations

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\begin{bmatrix} \mathbf{I} & \mathbf{t} \end{bmatrix}_{2 imes 3}$	2	orientation	
rigid (Euclidean)	$\begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix}_{2 imes 3}$	3	lengths	\bigcirc
similarity	$\begin{bmatrix} s \mathbf{R} & \mathbf{t} \end{bmatrix}_{2 \times 3}$	4	angles	\bigcirc
affine	$\begin{bmatrix} \mathbf{A} \end{bmatrix}_{2 imes 3}$	6	parallelism	
projective	$\left[{{{{{{ {f H}}}}}} } ight]_{3 imes 3}$	8	straight lines	

3D Translation



$$\mathbf{x}' = \mathbf{x} + \mathbf{t}$$

3D Euclidean Transformation SE(3)

• 3D Rotation + 3D translation

$$\mathbf{x}' = \mathbf{R}\mathbf{x} + \mathbf{t}$$
$$\mathbf{x}' = \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \mathbf{\bar{x}}$$
$$3 \times 4$$
$$\bar{\mathbf{x}} = (x, y, z, 1)$$

orthonormal rotation matrix

$$\mathbf{R}\mathbf{R}^T = \mathbf{I}$$
 and $|\mathbf{R}| = 1$
 3×3

We will focus on 3D rotations in next lecture.

3D Similarity Transformation

• Scaled 3D rotation + 3D translation

$$\mathbf{x}' = s\mathbf{R}\mathbf{x} + \mathbf{t}$$

$$\mathbf{x}' = \begin{bmatrix} s\mathbf{R} & \mathbf{t} \end{bmatrix} \bar{\mathbf{x}} \qquad \bar{\mathbf{x}} = (x, y, z, 1)$$
$$3 \times 4$$

This transformation preserves angles between lines and planes.

1/24/2022

3D Affine Transformation

$$\mathbf{x'} = \mathbf{A}\mathbf{\bar{x}}$$
 $\bar{\mathbf{x}} = (x, y, z, 1)$

$$\mathbf{x}' = \begin{bmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \end{bmatrix} \mathbf{\bar{x}}$$
$$\frac{3 \times 4}{2}$$

Parallel lines and planes remain parallel under affine transformations.

3D Projective Transformation

• Also called 3D perspective transform or homography

$${f ilde x}'={f ilde H}{f ilde x}$$
 homogeneous coordinates $4 imes 4$ ${f ilde H}$ is only defined up to a scale

• Perspective transformations preserve straight lines

3D Transformations

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\begin{bmatrix} \mathbf{I} & \mathbf{t} \end{bmatrix}_{3 \times 4}$	3	orientation	
rigid (Euclidean)	$\begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix}_{3 imes 4}$	6	lengths	\bigcirc
similarity	$\begin{bmatrix} s \mathbf{R} & \mathbf{t} \end{bmatrix}_{3 \times 4}$	7	angles	\bigcirc
affine	$\begin{bmatrix} \mathbf{A} \end{bmatrix}_{3 imes 4}$	12	parallelism	
projective	$\left[\mathbf{ ilde{H}} ight]_{4 imes 4}$	15	straight lines	

Further Reading

- Section 2.1, Computer Vision, Richard Szeliski
- Chapter 2 and 3, Multiple View Geometry in Computer Vision, Richard Hartley and Andrew Zisserman