

CS 6384 Computer Vision
Professor Yu Xiang
The University of Texas at Dallas

Neural Networks for Images and Languages

Image recognition

Natural Language Understanding

Google Translation

UT Dallas is a rising public research university in the heart of DFW.

French

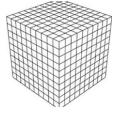
UT Dallas est une université de recherche publique en plein essor au cœur de DFW.

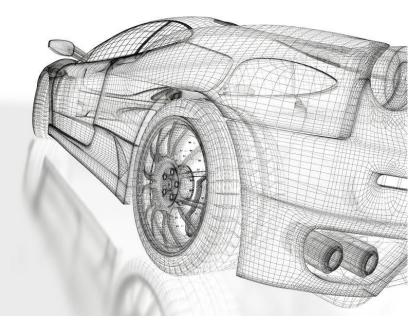
ImageNet classification

3D Data

Can we use neural networks for these 3D data?

3D Voxels

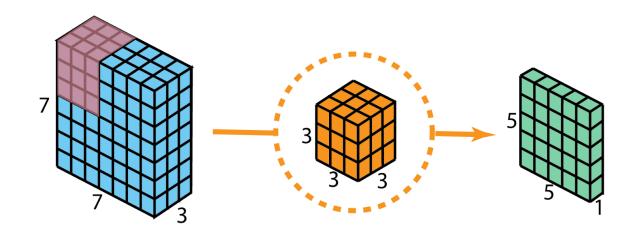


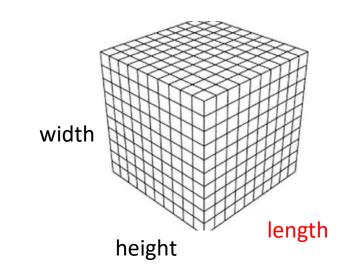


3D Meshes

3D Voxels

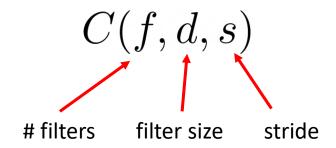
- Add an additional dimension to images
 - Images [height, width, 3]
 - Voxels [height, width, length, 3] (the last dimension can change depending on what data to store)
- Use 3D convolutions

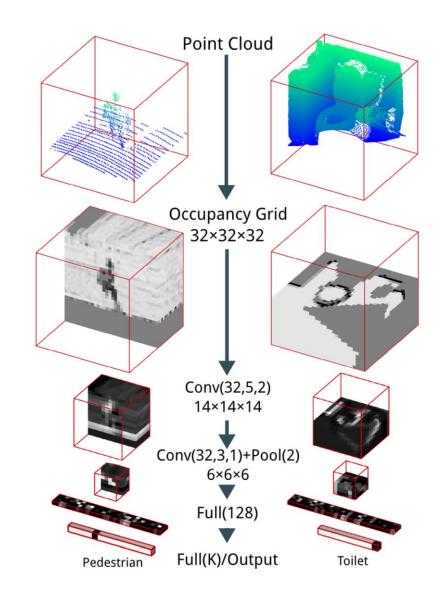




VoxNet

- Input: Volumetric occupancy grid
 - Each voxel stores the probability of that voxel is occupied
- 3D convolution layer



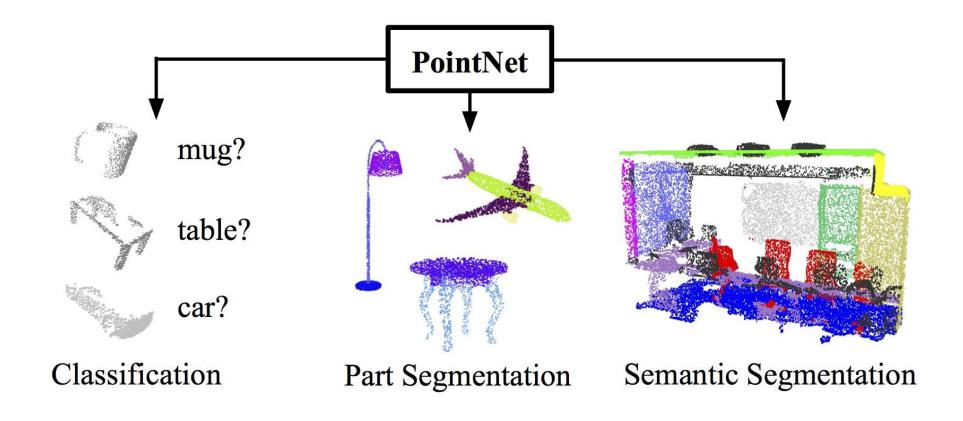


VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition. Maturana & Scherer, IROS'15

3D Points

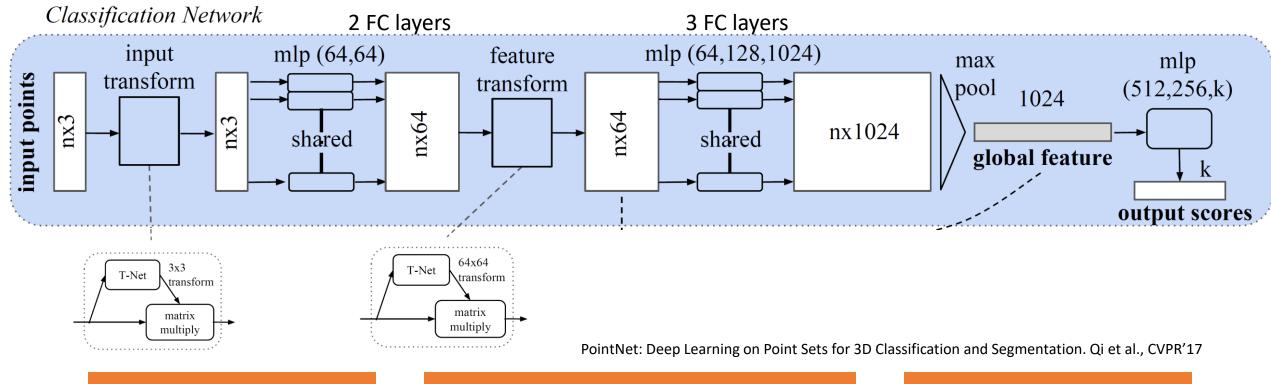
• 3D convolution is expensive

- 3D points N imes 3
 - A set, irregular format
 - Cannot directly apply 2D convolution or 3D convolution
 - Invariant to permutation and rigid transformation



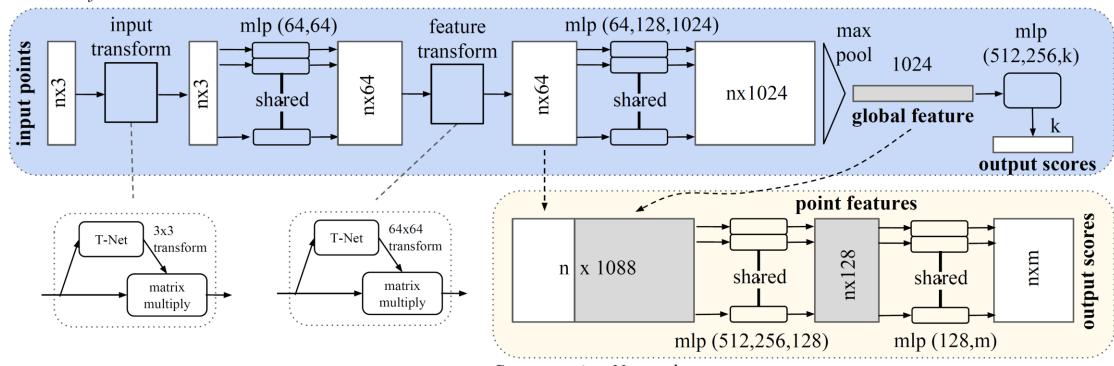
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. Qi et al., CVPR'17.

- Design principle
 - Invariant to permutation and rigid transformation
 - Per-point feature extraction and max-pooling



Point-wise labeling

Classification Network



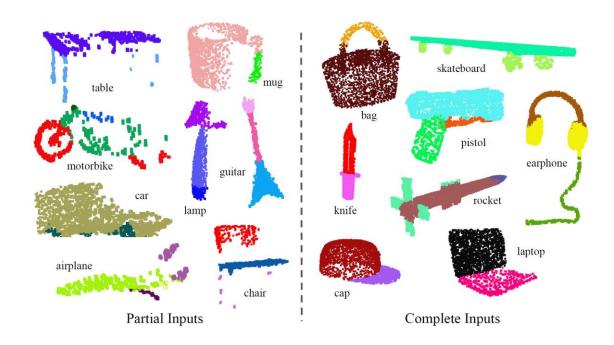
Segmentation Network

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. Qi et al., CVPR'17

	input	#views	accuracy	accuracy
			avg. class	overall
SPH [11]	mesh	-	68.2	-
3DShapeNets [28]	volume	1	77.3	84.7
VoxNet [17]	volume	12	83.0	85.9
Subvolume [18]	volume	20	86.0	89.2
LFD [28]	image	10	75.5	-
MVCNN [23]	image	80	90.1	-
Ours baseline	point	-	72.6	77.4
Ours PointNet	point	1	86.2	89.2

Table 1. Classification results on ModelNet40. Our net achieves state-of-the-art among deep nets on 3D input.

3D Shape Classification

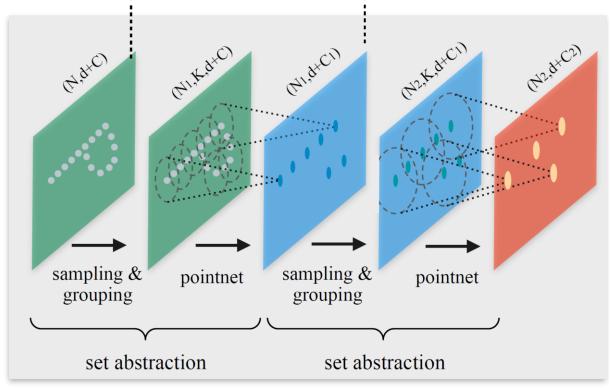


Part segmentation

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. Qi et al., CVPR'17

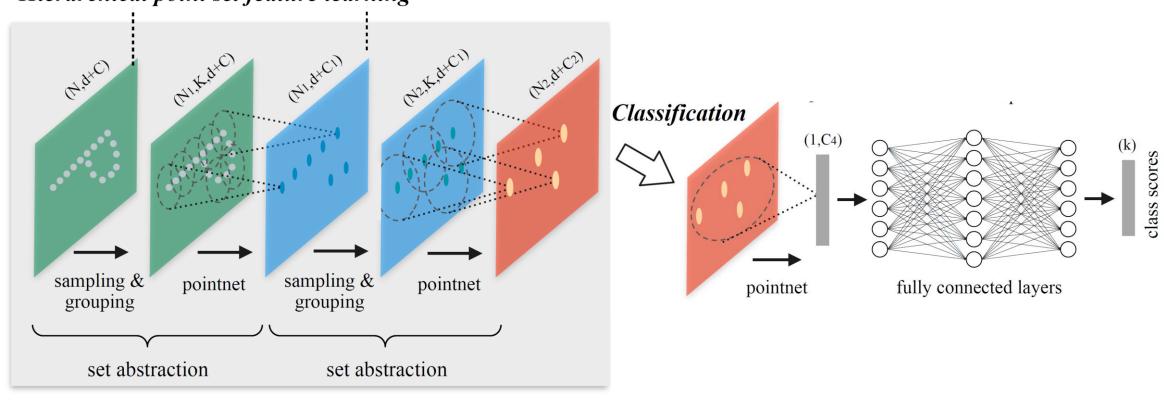
- PointNet cannot capture local structures of the point clouds
 - Per-point feature extraction and max-pooling
- PointNet++
 - A hierarchical neural network on 3D points
 - Use PointNet as a building block, extract features in a hierarchical way

Hierarchical point set feature learning

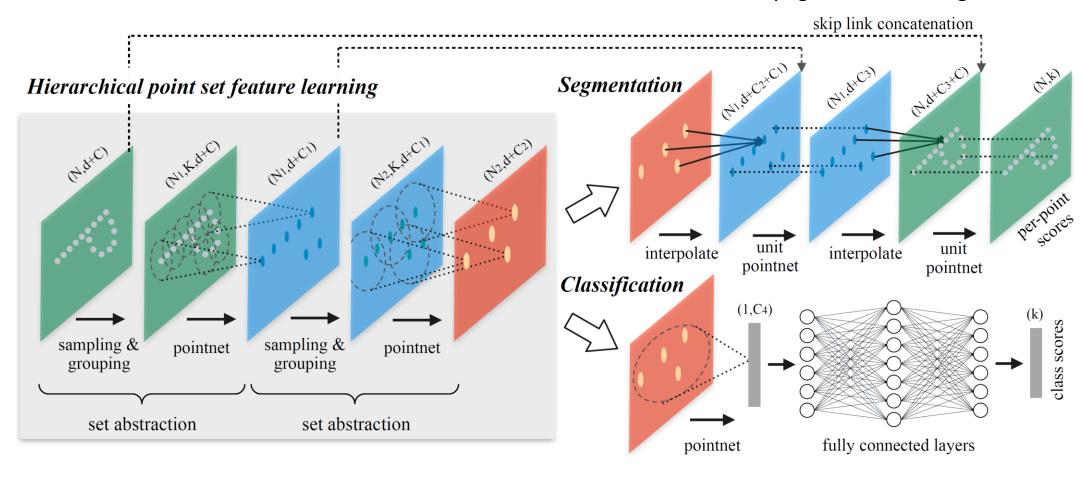


- Set abstraction levels (3 levels used)
 - Sampling layer (farthest point sampling), sample N' points (centroids)
 - Grouping layer, find K nearest neighbors for each centroid
 - Ball query
 - KNN
 - PointNet layer, extract a feature vector with dimension C' for each centroid and its neighbors

Hierarchical point set feature learning



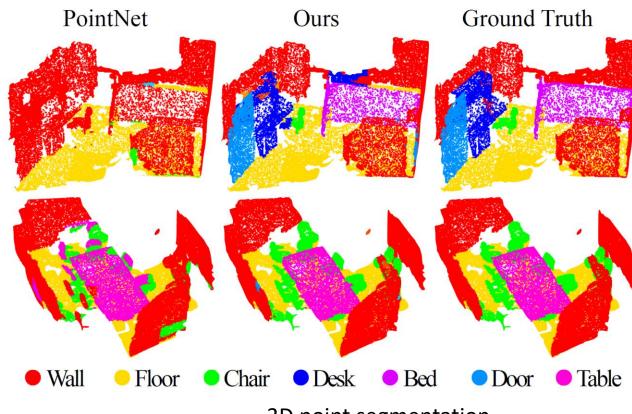
Point Feature Propagation for Set Segmentation



Method	Input	Accuracy (%)
Subvolume [21] MVCNN [26] PointNet (vanilla) [20] PointNet [20]	vox img pc pc	89.2 90.1 87.2 89.2
Ours Ours (with normal)	pc pc	90.7 91.9

Table 2: ModelNet40 shape classification.

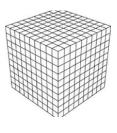
3D Shape Classification



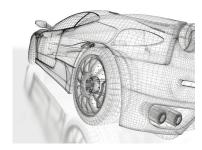
3D point segmentation

Implicit Representations of 3D Data

Explicit shape representations

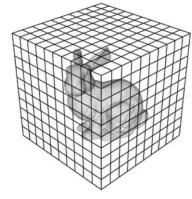


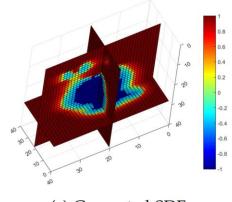
3D Voxels



3D Meshes

- Implicit shape representations
 - Use a function to encode the 3D shape
 - Example: Signed Distance Fields (SDFs)





(a) Surface view.

(b) Bounding volume.

(c) Generated SDF.

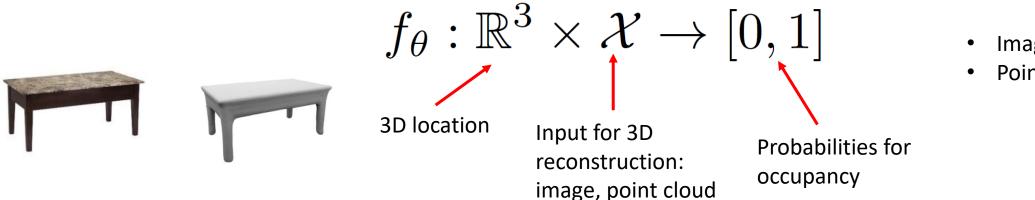
Signed Distance Fields for Rigid and Deformable 3D Reconstruction. Miroslava Slavcheva.

Occupancy Network for 3D Reconstruction

Occupancy function

$$o: \mathbb{R}^3 o \{0,1\}$$

Training a neural network to learn the following function



• Image: ResNet

Points: PointNet

Occupancy Networks: Learning 3D Reconstruction in Function Space. Mescheder et al., CVPR'19

Occupancy Network for 3D Reconstruction

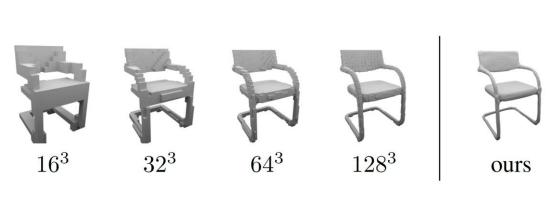
Training

$$\mathcal{L}_{\mathcal{B}}(\theta) = \frac{1}{|\mathcal{B}|} \sum_{i=1}^{|\mathcal{B}|} \sum_{j=1}^{K} \mathcal{L}(f_{\theta}(p_{ij}, x_i), o_{ij})$$

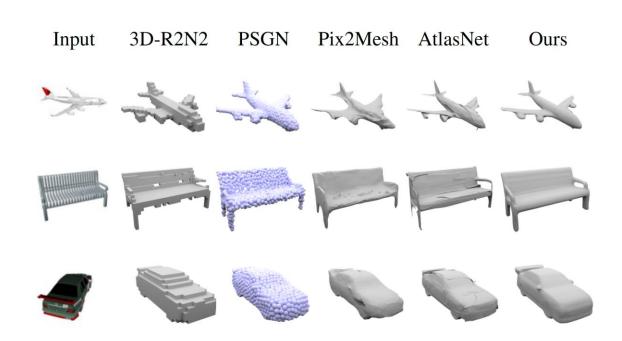
$$\lim_{\text{image i}} \int_{\text{image i}}^{\text{Cross-entropy}} \int_{\text{image i}}^{\text{Cross-entropy$$

Occupancy Networks: Learning 3D Reconstruction in Function Space. Mescheder et al., CVPR'19

Occupancy Network for 3D Reconstruction



Continuous shape representation



Single image 3D reconstruction

Occupancy Networks: Learning 3D Reconstruction in Function Space. Mescheder et al., CVPR'19

Signed distance function

$$SDF(\boldsymbol{x}) = s : \boldsymbol{x} \in \mathbb{R}^3, \, s \in \mathbb{R}$$

Train a neural network to predict SDFs

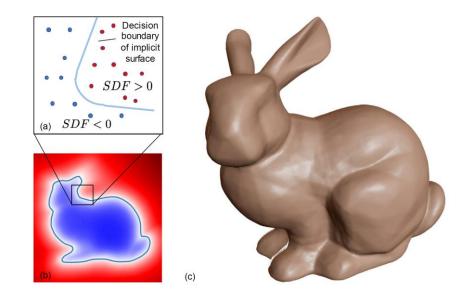
$$f_{\theta}(\boldsymbol{x}) \approx SDF(\boldsymbol{x}), \, \forall \boldsymbol{x} \in \Omega$$

Loss function

$$\mathcal{L}(f_{\theta}(\boldsymbol{x}), s) = |\operatorname{clamp}(f_{\theta}(\boldsymbol{x}), \delta) - \operatorname{clamp}(s, \delta)|$$

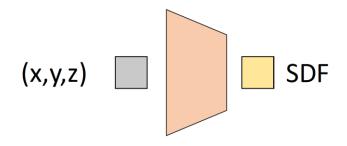
distance from the surface over $\operatorname{clamp}(x,\delta) := \min(\delta, \max(-\delta, x))$

which we expect to maintain a metric SDF DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. Park et al., CVPR'19



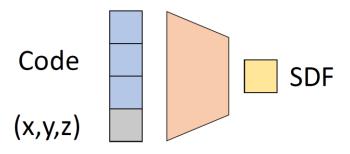
- 8 FC layers with dropout
- 512-d FC layer with ReLU
- Output with tanh

Learning the latent space of shapes



(a) Single Shape DeepSDF

$$f_{\theta}(\boldsymbol{x}) \approx SDF(\boldsymbol{x}), \, \forall \boldsymbol{x} \in \Omega$$

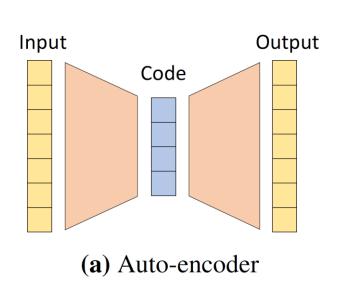


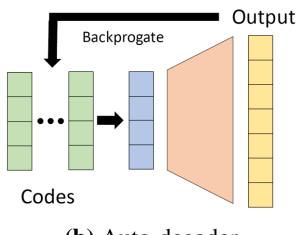
(b) Coded Shape DeepSDF

$$f_{ heta}(oldsymbol{z}_i,oldsymbol{x})pprox SDF^i(oldsymbol{x})$$
 Code for shape i

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. Park et al., CVPR'19

Auto-decoder





(b) Auto-decoder

Training objective

$$\underset{\theta, \{\boldsymbol{z}_i\}_{i=1}^N}{\operatorname{arg\,min}} \sum_{i=1}^N \left(\sum_{j=1}^K \mathcal{L}(f_{\theta}(\boldsymbol{z}_i, \boldsymbol{x}_j), s_j) + \frac{1}{\sigma^2} ||\boldsymbol{z}_i||_2^2 \right)$$

Inference

$$\hat{\boldsymbol{z}} = \operatorname*{arg\,min}_{\boldsymbol{z}} \sum_{(\boldsymbol{x}_j, \boldsymbol{s}_j) \in X} \mathcal{L}(f_{\theta}(\boldsymbol{z}, \boldsymbol{x}_j), s_j) + \frac{1}{\sigma^2} ||\boldsymbol{z}||_2^2$$

Shape completion from partial point clouds

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. Park et al., CVPR'19

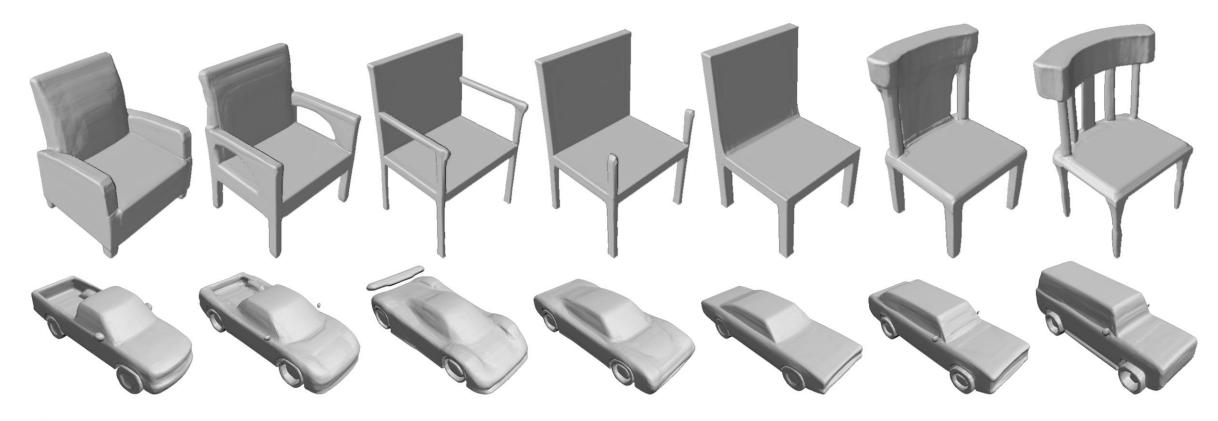
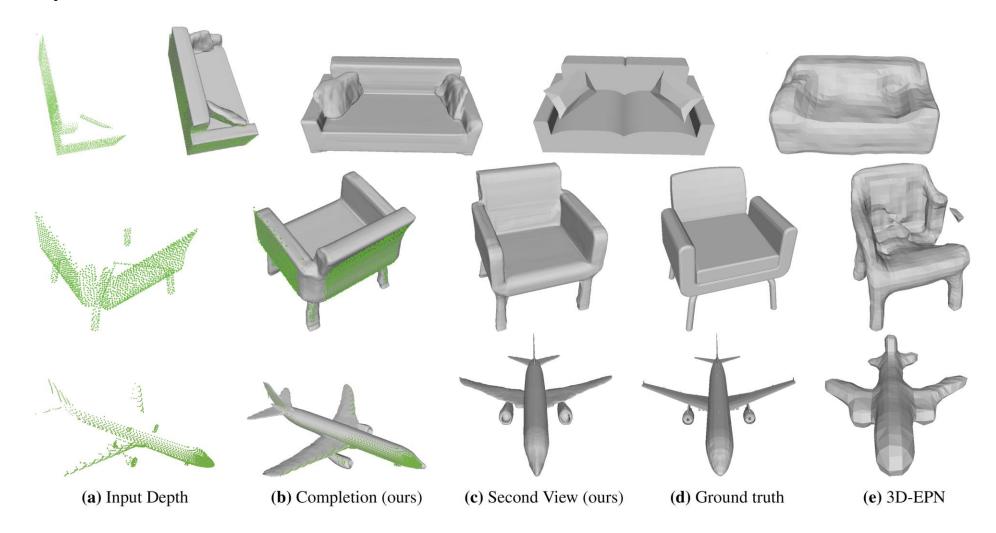


Figure 1: DeepSDF represents signed distance functions (SDFs) of shapes via latent code-conditioned feed-forward decoder networks. Above images are raycast renderings of DeepSDF interpolating between two shapes in the learned shape latent space. Best viewed digitally.

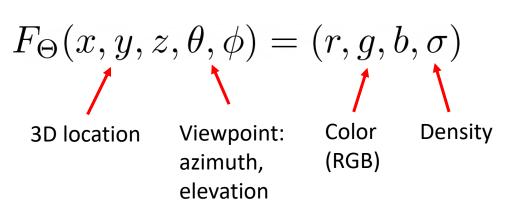
DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. Park et al., CVPR'19



DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. Park et al., CVPR'19

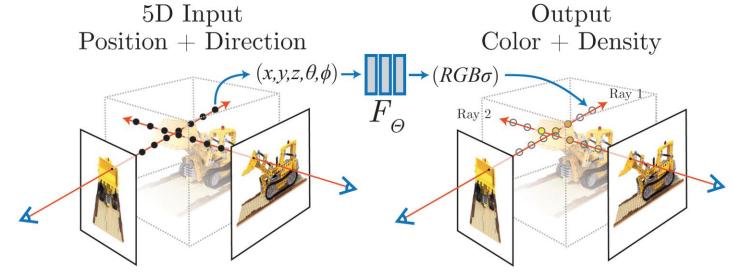
Neural Radiance Fields (NeRF)

- Represent 3D scenes with color information (geometry + appearance)
- Learning a 5D vector-valued function



$$F_{\Theta}: (\mathbf{x}, \mathbf{d}) \to (\mathbf{c}, \sigma)$$

Unit vector for direction



NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Mildenhall et al., ECCV'20

Neural Radiance Fields (NeRF)

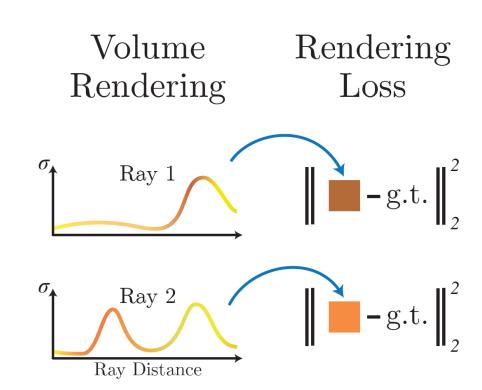
Volumetric rendering

Ray
$$\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$$

Color of the ray
$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t) \sigma(\mathbf{r}(t)) \mathbf{c}(\mathbf{r}(t), \mathbf{d}) dt$$
 Density Color

Probability that the ray travels from tnto t without hitting any other particle

$$T(t) = \exp\left(-\int_{t_n}^t \sigma(\mathbf{r}(s))ds\right)$$



Rending: find C(r) for a camera ray traced through each pixel

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Mildenhall et al., ECCV'20

Neural Radiance Fields (NeRF)

View Synthesis

https://www.matthewtancik.com/nerf

Summary

- Neural networks can be applied to 3D data
 - Shape recognition, shape reconstruction
 - Point cloud segmentation
 - View synthesis
 - Etc.
- Explicit 3D representations
 - Voxels, points, meshes
- Implicit 3D representations
 - Learn a function to represent the 3D shape (occupancy, SDFs, radiance fields)

Further Reading

- VoxNet
 https://www.ri.cmu.edu/pub files/2015/9/voxnet maturana scherer
 iros15.pdf
- PointNet https://arxiv.org/abs/1612.00593
- PointNet++ https://arxiv.org/pdf/1706.02413.pdf
- Occupancy Network https://arxiv.org/abs/1812.03828
- DeepSDF https://arxiv.org/abs/1901.05103
- NeRF https://arxiv.org/abs/2003.08934
- NeRF Explosion 2020 https://dellaert.github.io/NeRF/