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Supervised Learning
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Unsupervised Learning

• Training data

• Goal: discover some underlying hidden structure of the data

• Examples
• Dimension reduction
• Clustering
• Probability density estimation
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Dimension Reduction

• Map data from a high-dimension space to a low-dimension space

• The low-dimensional representation maintains meaningful properties 
of the original data

• E.g., can be used to reconstruct the original data

• Applications
• Data compression, data visualization, data representation learning

3/28/2022 Yu Xiang 4



Principal Component Analysis (PCA)

• Linear mapping
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Principal Component Analysis (PCA)

• Change of basis
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Principal Component Analysis (PCA)

• Given a set of data points

• Covariance matrix
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Principal Component Analysis (PCA)

• The goal of PCA
• All off-diagonal terms in          should be zero (Y is decorrelated)
• Each successive dimension of Y should be rank-ordered according to variance

• Solution
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A Tutorial on Principal Component Analysis. Jonathon Shlens, 2014

The principal components P is 
the eigenvectors of



Principal Component Analysis (PCA)

• Dimension reduction
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Use L < m principal components



Autoencoder

• Use a neural network for dimension reduction
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Encoder Decoder

Reconstruction loss function



Case Study: Augmented Autoencoder
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Augmented Autoencoders: Implicit 3D Orientation Learning for 6D Object Detection. Sundermeyer et al., IJCV’20



Case Study: Augmented Autoencoder

3/28/2022 Yu Xiang 12

Augmented Autoencoders: Implicit 3D Orientation Learning for 6D Object Detection. Sundermeyer et al., IJCV’20



Case Study: Augmented Autoencoder
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Augmented Autoencoders: Implicit 3D Orientation Learning for 6D Object Detection. Sundermeyer et al., IJCV’20



Case Study: Denoising Autoencoder
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https://www.analyticsvidhya.com/blog/2021/07/image-denoising-using-autoencoders-a-beginners-guide-to-deep-learning-project/

https://www.analyticsvidhya.com/blog/2021/07/image-denoising-using-autoencoders-a-beginners-guide-to-deep-learning-project/


Content Generation

• Given a dataset
• How to generate new content from the underlying distribution P(x)?
• Autoencoder is not suitable for content generation
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Encoder Decoder

The latent space is not regularized. Some latent vectors may generate meaningless content.



Variational Autoencoder

• Introduce regularization to the latent space
• Probabilistic formulation
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Variational Autoencoder

• Latent space
• Continuity (close points in latent space decode similar outputs)
• Completeness (a sampled latent should generate meaningful output)
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https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


Variational Autoencoder

• Encoder
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Variational Autoencoder

• Encoder-Decoder

• Loss function
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Encoder Decoder

Reconstruction loss Prior loss



Variational Autoencoder

• Generating data

3/28/2022 Yu Xiang 20

Decoder

Auto-Encoding Variational Bayes. Kingma & Welling, ICLR’14.

2D latent space

• Diagonal prior on z -> independent 
latent variables

• Different dimensions of z encode 
interpretable factors of variation



Direct Content Generation

• VAE models the density as

• Directly sample from the training distribution without modeling the 
probability density

• Generative Adversarial Networks (GANs) can generate better samples 
compared to VAEs
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Generative Adversarial Network (GAN)

• Goal: sample examples from training distribution
• Solution

• First sample from a simple distribution (e.g., uniform distribution)
• Learn transformation to the training distribution
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Input: random noise

Output: sample from the 
training distribution

How to train the generator?
• We do not know the mapping 

from z to training data



Generative Adversarial Network (GAN)

• Generator-Discriminator
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Training GAN: Two-player Game

• Discriminator: try to distinguish between real image and fake images 
(generated images from the generator)

• Generator: try to fool the discriminator by generating real-look images
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Training GAN: Two-player Game

• Minmax objective function
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Generative Adversarial Nets. Goodfellow et al. NeurIPS’14

Discriminator output 
for real data x
• Likelihood in (0, 1)

Generator outputDiscriminator output 
for generated fake data

• Discriminator: maximize the objective such that D(x) is close to 1 and D(G(z)) is close to 0
• Generator: minimize the objective such that D(G(z)) is close too 1 (fool the discriminator)



Training GAN: Two-player Game

• Minmax objective function

• Alternate between
• Gradient ascent on discriminator

• Gradient descent on generator
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Generative Adversarial Nets. Goodfellow et al. NeurIPS’14

Gradient is relative flat



Training GAN: Two-player Game

• Minmax objective function

• Alternate between
• Gradient ascent on discriminator

• Gradient ascent on generator
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Generative Adversarial Nets. Goodfellow et al. NeurIPS’14



Training GAN: Two-player Game
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Generative Adversarial Nets. Goodfellow et al. NeurIPS’14



Generative Adversarial Network (GAN)
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Generative Adversarial Nets. Goodfellow et al. NeurIPS’14

Visualization of samples from the model

Nearest neighbor from training set



Deep Convolutional GANs (DCGANs)

• Use CNNs for generator and discriminator
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UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS. Radford et al., ICLR’16



Deep Convolutional GANs (DCGANs)
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UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS. Radford et al., ICLR’16

Generated 
samples



Summary

• Autoencoder
• Good for dimension reduction, cannot generate new data

• Variational autoencoder
• Probabilistic formulation
• Regularized latent space, can be used to generate new data

• Generative Adversarial Network
• Directly sample training distribution to generate data
• Better samples compared VAEs
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Further Reading
• A Tutorial on Principal Component Analysis. Jonathon Shlens, 2014. 

https://arxiv.org/abs/1404.1100

• Auto-Encoding Variational Bayes. Kingma & Welling, ICLR, 2004. 
https://arxiv.org/abs/1312.6114

• Autoencoders. Dor Bank, Noam Koenigstein, Raja Giryes, 2021. 
https://arxiv.org/abs/2003.05991

• Generative Adversarial Nets. Goodfellow et al. NeurIPS’14. 
https://arxiv.org/abs/1406.2661

• UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE 
ADVERSARIAL NETWORKS. Radford et al., ICLR’16. https://arxiv.org/abs/1511.06434
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