Generative Neural Networks

CS 6384 Computer Vision

Professor Yu Xiang

The University of Texas at Dallas

EST

NIN

Supervised Learning

Unsupervised Learning

- Training data
$$\{\mathbf{x}_i\}_{i=1}^N$$
 No label

- Goal: discover some underlying hidden structure of the data
- Examples
 - Dimension reduction
 - Clustering
 - Probability density estimation

Dimension Reduction

• Map data from a high-dimension space to a low-dimension space

$$\mathbf{x} \in \mathcal{R}^n \to \mathbf{y} \in \mathcal{R}^m \qquad m < n$$

- The low-dimensional representation maintains meaningful properties of the original data
 - E.g., can be used to reconstruct the original data
- Applications
 - Data compression, data visualization, data representation learning

Yu Xiang

• Change of basis

$$\mathbf{y} = \begin{bmatrix} \mathbf{p}_1 \cdot \mathbf{x} \\ \mathbf{p}_2 \cdot \mathbf{x} \\ \vdots \\ \mathbf{p}_m \cdot \mathbf{x} \end{bmatrix}$$

• Given a set of data points

Y = PX

$$X \in \mathcal{R}^{m \times n}$$

• Covariance matrix

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_m \end{bmatrix} \qquad \mathbf{C}_{\mathbf{X}} \equiv \frac{1}{n} \mathbf{X} \mathbf{X}^T \qquad \mathbf{C}_{\mathbf{Y}}$$
Rows of X

- The goal of PCA
 - All off-diagonal terms in ${f C}_{f Y}$ should be zero (Y is decorrelated)
 - Each successive dimension of Y should be rank-ordered according to variance
- Solution

$$\mathbf{C}_{\mathbf{Y}} = \frac{1}{n} \mathbf{Y} \mathbf{Y}^{T} \qquad \mathbf{C}_{\mathbf{Y}} = \mathbf{P} \mathbf{C}_{\mathbf{X}} \mathbf{P}^{T} \qquad \text{the e}$$

$$= \frac{1}{n} (\mathbf{P} \mathbf{X}) (\mathbf{P} \mathbf{X})^{T} \qquad = \mathbf{P} (\mathbf{E}^{T} \mathbf{D} \mathbf{E}) \mathbf{P}^{T}$$

$$= \frac{1}{n} \mathbf{P} \mathbf{X} \mathbf{X}^{T} \mathbf{P}^{T} \qquad = (\mathbf{P} \mathbf{P}^{T}) \mathbf{D} (\mathbf{P} \mathbf{P}^{T})$$

$$= \mathbf{P} (\frac{1}{n} \mathbf{X} \mathbf{X}^{T}) \mathbf{P}^{T} \qquad = (\mathbf{P} \mathbf{P}^{-1}) \mathbf{D} (\mathbf{P} \mathbf{P}^{-1})$$

$$\mathbf{C}_{\mathbf{Y}} = \mathbf{P} \mathbf{C}_{\mathbf{X}} \mathbf{P}^{T} \qquad \mathbf{C}_{\mathbf{Y}} = \mathbf{D}$$

The principal components P is the eigenvectors of

$$C_{\mathbf{X}} \equiv \frac{1}{n} \mathbf{X} \mathbf{X}^{T}$$

A Tutorial on Principal Component Analysis. Jonathon Shlens, 2014

Yu Xiang

Dimension reduction

 $\mathbf{y} = P_L \mathbf{x}$

Use L < m principal components

Autoencoder

• Use a neural network for dimension reduction

Reconstruction loss function

$$L_2 = \|\mathbf{x} - \hat{\mathbf{x}}\|^2$$

Case Study: Augmented Autoencoder

Augmented Autoencoders: Implicit 3D Orientation Learning for 6D Object Detection. Sundermeyer et al., IJCV'20

Case Study: Augmented Autoencoder

Augmented Autoencoders: Implicit 3D Orientation Learning for 6D Object Detection. Sundermeyer et al., IJCV'20

Case Study: Augmented Autoencoder

Augmented Autoencoders: Implicit 3D Orientation Learning for 6D Object Detection. Sundermeyer et al., IJCV'20

Case Study: Denoising Autoencoder

https://www.analyticsvidhya.com/blog/2021/07/image-denoising-using-autoencoders-a-beginners-guide-to-deep-learning-project/

3/28/2022	Yu Xiang	14

Content Generation

- Given a dataset $\{\mathbf{x}_i\}_{i=1}^N$
- How to generate new content from the underlying distribution P(x)?
- Autoencoder is not suitable for content generation

The latent space is not regularized. Some latent vectors may generate meaningless content.

- Introduce regularization to the latent space
- Probabilistic formulation

- Latent space
 - Continuity (close points in latent space decode similar outputs)
 - Completeness (a sampled latent should generate meaningful output)

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

• Encoder

Reparameterization

• Loss function

3/28/2022

$$L = C \|\mathbf{x} - \hat{\mathbf{x}}\|^2 + \mathrm{KL}(\mathcal{N}(\mu_x, \sigma_x), \mathcal{N}(\mathbf{0}, \mathbf{I}))$$

Yu Xiang

Reconstruction loss

- Diagonal prior on z -> independent latent variables
- Different dimensions of z encode interpretable factors of variation

2D latent space

Auto-Encoding Variational Bayes. Kingma & Welling, ICLR'14.

Direct Content Generation

• VAE models the density as

$$p_{\theta}(x) = \int p_{\theta}(z) p_{\theta}(x|z) dz$$

- Directly sample from the training distribution without modeling the probability density
- Generative Adversarial Networks (GANs) can generate better samples compared to VAEs

Generative Adversarial Network (GAN)

- Goal: sample examples from training distribution $P(\mathbf{x})$
- Solution
 - First sample from a simple distribution (e.g., uniform distribution)
 - Learn transformation to the training distribution

Generative Adversarial Network (GAN)

• Generator-Discriminator

- Discriminator: try to distinguish between real image and fake images (generated images from the generator)
- Generator: try to fool the discriminator by generating real-look images

Minmax objective function

$$\min_{\theta_{g}} \max_{\theta_{d}} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_{d}}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_{d}}(G_{\theta_{g}}(z))) \right]$$

$$\lim_{for real data x} Discriminator output for real data x \\ \cdot \text{ Likelihood in } (0, 1) Discriminator output for generated fake data} Generator output for generated fake data Discriminator output for generated fake data Discriminator output for generated fake data} Generator output for generated fake data Discriminator output for generated fake data Discri$$

- Discriminator: maximize the objective such that D(x) is close to 1 and D(G(z)) is close to 0
- Generator: minimize the objective such that D(G(z)) is close too 1 (fool the discriminator)

Generative Adversarial Nets. Goodfellow et al. NeurIPS'14

Minmax objective function

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

- Alternate between
 - Gradient ascent on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

• Gradient descent on generator

$$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

Generative Adversarial Nets. Goodfellow et al. NeurIPS'14

Minmax objective function

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

- Alternate between
 - Gradient ascent on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Gradient ascent on generator

$$\max_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(D_{\theta_d}(G_{\theta_g}(z)))$$

Generative Adversarial Nets. Goodfellow et al. NeurIPS'14

Yu Xiang

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right).$$

end for

Generative Adversarial Nets. Goodfellow et al. NeurIPS'14

3/28/2022	Yu Xiang		2
-----------	----------	--	---

Generative Adversarial Network (GAN)

Visualization of samples from the model

Nearest neighbor from training set

Generative Adversarial Nets. Goodfellow et al. NeurIPS'14

Yu Xiang

Deep Convolutional GANs (DCGANs)

• Use CNNs for generator and discriminator

UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS. Radford et al., ICLR'16

Deep Convolutional GANs (DCGANs)

UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS. Radford et al., ICLR'16

Generated samples

Summary

- Autoencoder
 - Good for dimension reduction, cannot generate new data
- Variational autoencoder
 - Probabilistic formulation
 - Regularized latent space, can be used to generate new data
- Generative Adversarial Network
 - Directly sample training distribution to generate data
 - Better samples compared VAEs

Further Reading

- A Tutorial on Principal Component Analysis. Jonathon Shlens, 2014. https://arxiv.org/abs/1404.1100
- Auto-Encoding Variational Bayes. Kingma & Welling, ICLR, 2004. <u>https://arxiv.org/abs/1312.6114</u>
- Autoencoders. Dor Bank, Noam Koenigstein, Raja Giryes, 2021. https://arxiv.org/abs/2003.05991
- Generative Adversarial Nets. Goodfellow et al. NeurIPS'14. <u>https://arxiv.org/abs/1406.2661</u>
- UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS. Radford et al., ICLR'16. <u>https://arxiv.org/abs/1511.06434</u>