Recurrent Neural Networks

CS 6384 Computer Vision
Professor Yu Xiang
The University of Texas at Dallas

Some slides of this lecture are courtesy Stanford CS231n
Single Images

• Convolutional neural networks

Image --> CNN --> High-level information
• Depth
• Object classes
• Object poses
• Etc.
Sequential Data

- Data depends on time
 - Video
 - Sentence

UT Dallas is a rising public research university in the heart of DFW.
Sequential Data Labeling

• Video frame labeling

Sequential Data Labeling

- Part-of-speech tagging (grammatical tagging)
Sequential Data Labeling

Input X_{t-1} X_t X_{t+1}

Output label Y_{t-1} Y_t Y_{t+1}

Classifier

How to capture information across time?
Recurrent Neural Networks

Output label

\[Y_{t-1} \quad Y_t \quad Y_{t+1} \]

\[\uparrow \quad \uparrow \quad \uparrow \]

\[X_{t-1} \quad X_t \quad X_{t+1} \]

Input

RNN

RNN

RNN

Internal state (memory)

\[h \]
Hidden State Update

\[h_t = f_W(h_{t-1}, x_t) \]

- \(h_t \): Hidden state at time \(t \)
- \(h_{t-1} \): Hidden state at time \(t-1 \)
- \(x_t \): Input at time \(t \)
- \(f_W \): Updating function with parameters \(W \)
Using the Hidden State

\[h_t = f_W(h_{t-1}, x_t) \]

\[y_t = f_{W'}(h_t) \]
Recurrent Neural Networks

Output label

\(Y_{t-1} \)

\(Y_t \)

\(Y_{t+1} \)

Internal state (memory)

Input

\(X_{t-1} \)

\(X_t \)

\(X_{t+1} \)
Vanilla RNN

Hidden state updating rule

\[h_t = \tanh(W_{hh} h_{t-1} + W_{xh} x_t) \]

\[y_t = W_{hy} h_t \]

\[m \times 1 \quad m \times m \quad m \times 1 \quad m \times n \quad n \times 1 \]

\[m \times 1 \quad m \times 1 \]
RNN Computation Graph

The same set of weights for different time steps f_W, f_W'
RNN Training

\[y_1 \rightarrow L_1 \]
\[y_2 \rightarrow L_2 \]
\[y_3 \rightarrow L_3 \]

\[h_0 \rightarrow f_W \rightarrow h_1 \rightarrow f_W \rightarrow h_2 \rightarrow f_W \rightarrow h_3 \rightarrow \ldots \]

Gradients
What is the problem in this training paradigm?
Truncated Backpropagation through Time

Run forward and backward through chunks of the sequence instead of whole sequence
Truncated Backpropagation through Time

Carry hidden states forward in time forever, but only backpropagate for some smaller number of steps.
Truncated Backpropagation through Time
Vanilla RNN Gradient Flow

\[h_t = \tanh(W_{hh} h_{t-1} + W_{xh} x_t) \]

\[= \tanh \left(\begin{pmatrix} W_{hh} & W_{hx} \end{pmatrix} \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix} \right) \]

\[= \tanh \left(W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix} \right) \]
Vanilla RNN Gradient Flow

Backpropagation from h_t to h_{t-1} multiplies by W (actually W_{hh}^T)

$$h_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t)$$

$$= \tanh \left((W_{hh} \ W_{hx}) \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix} \right)$$

$$= \tanh \left(W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix} \right)$$

$$\frac{\partial h_t}{\partial h_{t-1}} = \tanh'(W_{hh}h_{t-1} + W_{xh}x_t)W_{hh}$$
Vanilla RNN Gradient Flow

\[
\frac{\partial L}{\partial W} = \sum_{t=1}^{T} \frac{\partial L_t}{\partial W}
\]

\[
\frac{\partial L_T}{\partial W} = \frac{\partial L_T}{\partial h_T} \frac{\partial h_t}{\partial h_{t-1}} \cdots \frac{\partial h_1}{\partial W} = \frac{\partial L_T}{\partial h_T} \left(\prod_{t=2}^{T} \frac{\partial h_t}{\partial h_{t-1}} \right) \frac{\partial h_1}{\partial W}
\]
Vanilla RNN Gradient Flow

![Diagram of Vanilla RNN Gradient Flow]

\[\frac{\partial L_T}{\partial W} = \frac{\partial L_T}{\partial h_T} \left(\prod_{t=2}^{T} \frac{\partial h_t}{\partial h_{t-1}} \right) \frac{\partial h_1}{\partial W} \]

- Vanishing gradients: \[\| \frac{\partial h_t}{\partial h_{t-1}} \|_2 < 1 \]
- Exploding gradients: \[\| \frac{\partial h_t}{\partial h_{t-1}} \|_2 > 1 \]

https://en.wikipedia.org/wiki/Matrix_norm
Vanilla RNN Gradient Flow

• Exploding gradients \[\left\| \frac{\partial h_t}{\partial h_{t-1}} \right\|_2 > 1 \]

• Gradient clipping

```
grad_norm = np.sum(grad * grad)
if grad_norm > threshold:
    grad *= (threshold / grad_norm)
```

• Vanishing gradients \[\left\| \frac{\partial h_t}{\partial h_{t-1}} \right\|_2 < 1 \]

• Change RNN architecture
Long Short Term Memory (LSTM)

Vanilla RNN

\[h_t = \tanh \left(W \left(h_{t-1}, x_t \right) \right) \]

LSTM

\[
\begin{pmatrix}
 i \\
 f \\
 o \\
 g
\end{pmatrix}
= \begin{pmatrix}
 \sigma \\
 \sigma \\
 \sigma \\
 \tanh
\end{pmatrix}
W \begin{pmatrix}
 h_{t-1} \\
 x_t
\end{pmatrix}
\]

\[c_t = f \odot c_{t-1} + i \odot g \]

\[h_t = o \odot \tanh(c_t) \]

Sigmoid

\[\sigma(x) = \frac{1}{1 + e^{-x}} \]
Long Short Term Memory (LSTM)

- g: Gate gate, how much to write to cell
- i: Input gate, whether to write to cell
- f: Forget gate, whether to erase cell
- o: Output gate, how much to reveal cell

\[
\begin{pmatrix}
i \\ f \\ o \\ g
\end{pmatrix} =
\begin{pmatrix}
\sigma & \sigma & \sigma & \text{tanh}
\end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}
\]

\[
c_t = f \odot c_{t-1} + i \odot g
\]

\[
h_t = o \odot \text{tanh}(c_t)
\]
Long Short Term Memory (LSTM)

- Make the RNN easier to preserve information over many steps
 - E.g., \(f = 1 \) and \(i = 0 \)
 - This is difficult for vanilla RNN

- LSTM does not guarantee that there is no vanishing or exploding gradient

- It provides an easier way to learn long-distance dependencies

\[
\begin{pmatrix}
 i \\
 f \\
 o \\
 g
\end{pmatrix} =
\begin{pmatrix}
 \sigma \\
 \sigma \\
 \sigma \\
 \tanh
\end{pmatrix} W \begin{pmatrix}
 h_{t-1} \\
 x_t
\end{pmatrix}
\]

\[
c_t = f \odot c_{t-1} + i \odot g
\]

\[
h_t = o \odot \tanh(c_t)
\]
Gated Recurrent Unit (GRU)

\[
\begin{align*}
 z_t &= \sigma_g(W_z x_t + U_z h_{t-1} + b_z) \\
 r_t &= \sigma_g(W_r x_t + U_r h_{t-1} + b_r) \\
 \hat{h}_t &= \phi_h(W_h x_t + U_h (r_t \odot h_{t-1}) + b_h) \\
 h_t &= (1 - z_t) \odot h_{t-1} + z_t \odot \hat{h}_t
\end{align*}
\]

- \(x_t\): input vector
- \(h_t\): output vector
- \(\hat{h}_t\): candidate activation vector
- \(z_t\): update gate vector
- \(r_t\): reset gate vector
- \(W, U\) and \(b\): parameter matrices and vector

https://en.wikipedia.org/wiki/Gated_recurrent_unit
GRUs vs. LSTMs

• Both have a forget gate

• GRU has fewer parameters, no output gate

• GRUs have similar performance compared to LSTMs, have shown better performance on certain datasets
Recurrent Neural Networks

E.g., action recognition on video frames

E.g., image captioning, image -> sequences of words

E.g., action prediction, sequences of frames -> action class

E.g., Video Captioning
Sequence of video frames -> caption
Recurrent Units on CNN Features

RGB Image
Time t
Depth Image

RGB Image
Time t+1
Depth Image

Convolution + ReLU
Max Pooling
Concatenation
Deconvolution
Addition
Recurrent Units

Labels
data association

DA-RNN. Xiang & Fox, RSS’17
Summary

• RNNs can be used for sequential data to capture dependencies in time

• LSTMs and GRUs are better than vanilla RNNs

• It is difficult to capture long-term dependencies in RNNs

• Use transformers (next lecture)
Further Reading

• Stanford CS231n, lecture 10, Recurrent Neural Networks
 http://cs231n.stanford.edu/

• Long Short Term Memory
 https://www.researchgate.net/publication/13853244_Long_Short-term_Memory

• Gated Recurrent Units