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How to Recover the 3D World from Images?

e Structure from Motion (SfM)
e Structure: the geometry of the 3D world
* Motion: camera motion

* Input: a set of images (no need to be videos)
* From computer vision

: C L : Point cloud captured Oust
» Simultaneous Localization and Mapping (SLAM)  od1” 50 et lidar semsor
* Localization: camera pose

* Mapping: build the geometry of the 3D world
* Input: video sequences
* From robotics
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Triangulation

* |dea: using images from different views and feature matching

* Triangulation from pixel correspondences to compute 3D location
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What if unknow camera pose?




Structure from Motion

* Input
* A set of images from different views

* Output
* 3D Locations of all feature points in a world frame
* Camera poses of the images




Structure from motion

Goal: estimate R, T, P
minimize
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Structure from Motion

* Minimize sum of squared reprojection errors
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Structure from Motion

* How to minimize
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* A non-linear least squares problem (why?)
* E.g. Levenberg-Marquardt




The Levenberg-Marquardt Algorithm

* Nonlinear least squares 3 c argmin, 5 (8) = argming 3 _ [y — f (s, 8)]’
n x 1 =

* An iterative algorithm
* Start with an initial guess (¢

* For each iteration 3 < 3 + ¢

o ?
How to get 5 _of (z, B)

* Linear approximation f(z;,B8+ 4d) =~ f(x;,B) + J;d J; o8 1 Xn
* Find 5 to minimize the objective § (8 + &) = Z i — f(zi, B) — ch‘f]z
Best to minimize the objectivei:1 Wikipedia




The Levenberg-Marquardt Algorithm

T

* Vector notation for  S(8+6) ~ > [y — f(a:, B) — J:4]°
1=1
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https://www.cs.ubc.ca/~schmidtm/Course

Take derivation with respect to 5 and set to zero (J T3 ) §=J" [y —f(B)] :suris/incarquairaticoradionts odf

Levenberg's contribution (J*J + AI)§=J" [y — £(B)]  damped version
B+ B+9

Wikipedia



https://www.cs.ubc.ca/~schmidtm/Courses/340-F16/linearQuadraticGradients.pdf

Structure from Motion

g(X,R,T) = ZZWU PR, )—lﬁlez

i=1j=1~
pred.-cted observed
,l, image location image location
indicator variable:

is point j visible in image j ?
How to get the initial estimation 50 ?

Random guess is not a good idea.




Matching Two Views

e Fundamental matrix
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Matching Two Views
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Matching Two Views
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* Recover the relative pose R
and t from the essential
matrix E up to the scale of t

F=[e/]KRK™' =K'~ T[t],RK'

F=KTFK

E = [t]«R s L, B

u=K[I |0]X u' =K'[R | t]X
credit: Thomas Opsahl
H. C Longuet-Higgins, A computer algorithm for reconstructing a scene from two projections, 1981




Matching Two Views
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t|«R-t
= (txR)-t=0

Use SVD to solve for t nr

R=—[t|«E

u=K[I |0]X u' =K'[R | t]X
credit: Thomas Opsahl
H. C Longuet-Higgins, A computer algorithm for reconstructing a scene from two projections, 1981




Matching Two Views
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e If we do not know the
camera intrinsics

* Work with projection matrix
P=1I[0] P =][A]b]
X,TFX — () A —>

F — [b] A u=KJ[I |0]X u' =K'[R | t]X
_ X

credit: Thomas Opsahl




Triangulation
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Estimated from essential matrix E

How to get the initial estimation 60 ?

/8 == (X7 R? T)




Structure from Motion

- Pxi Ry ) - [o17] |
e Bundle adjustment gXRT) = ZZW” ‘ (X; ) Vi
. : i=1j=1,J
* |teratively refinement of predicted observed
structure (3D points) and .l, image location image location
. indicator variable:
motion (camera poses) is point / visible in image j ?
n d X,
* Levenberg-Marquardt freoninete 8. g grounduthX;
algorithm e

B+ B+9

Examples: http://vision.soic.indiana.edu/projects/disco/



http://vision.soic.indiana.edu/projects/disco/

Build Rome in One Day
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https://grail.cs.washington.edu/rome/



https://grail.cs.washington.edu/rome/

Simultaneous Localization and Mapping (SLAM)

* Localization: camera pose tracking
* Mapping: building a 2D or 3D representation of the environment

* The goal here is the same as structure from motion but with video
input

ORB-SLAM2
e Point cloud and camera poses




Case Study: ORB-SLAM

Oriented FAST and Rotated
BRIEF (ORB)

Tracking camera poses
* Motion only Bundle
Adjustment (BA)

Mapping
e Local BA around
camera pose

Loop closing
* Loop detection

https://webdiis.unizar.es/~raulmur/orbslam/




Case Study: ORB-SLAM

* Feature descriptors: Oriented FAST and Rotated BRIEF (ORB)

* Similar matching performance as SIFT
e Real-time computation without GPUs

ORB: an efficient alternative to SIFT or SURF. Rublee et al. ICCV’11.




Case Study: ORB-SLAM

* Tracking camera poses

* Motion only Bundle Adjustment (BA)
* Huber cost function and covariance matrix associated to the scale of the keypoint

. , 2
{R,t} = argmin E e, Hx%,) — () (RX’L 4 t) H
Rt ° >
e X \
Camera pose Detected Keypoint 3D point in the map
(world coordinates)
venbera iy ) L Ls(a) %az for |a| < 4,
— )] =
evenberg—Marquardt metho 5 (|l — %5), otherwise.

Huber loss function




Case Study: ORB-SLAM

* Mapping
* Local BA around the estimated camera pose
* Refine 3D point locations

3D point Keyframe
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Case Study: ORB-SLAM

* Loop closing and full BA

& w52
(a) KeyFrames (blue), Current Cam- (b) Covisibility Graph (c) Spanning Tree (green) and Loop (d) Essential Graph
era (green), MapPoints (black, red), Closure (red)
Current Local MapPoints (red) Edges from the covisibility

graph with high covisibility




Case Study: ORB-SLAM




RGB-D SLAM

* RGB-D cameras

Intel RealSense

Microsoft Kinect

* Using depth images: 3D points in the camera frame

Point Cloud



RGB-D SLAM

 Camera pose tracking
* |terative closest point (ICP) algorithm

Input: source point cloud, target point cloud
Output: rigid transformation from source to target

* Foriinrange(N)
* For each pointin the source, find the closest
point in the target (correspondences)
e Estimation R and T using the correspondences o
* Transform the source points using Rand T g'z*t.c‘st?g'ép'#."d




RGB-D SLAM

* Mapping: fuse point clouds into a global frame
* Map representation

Voxels |
_ Surfels (small 3D surface)
Point clouds Visual Odometry and Mapping for Autonomous
Flight Using an RGB-D Camera. Huang, et al. 2011 ElasticFusion

ORB-SLAM




KinectFusion

https://youtu.be/of6d7C ZWwc
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https://youtu.be/of6d7C_ZWwc

DynamickFusion

A volumetric flow field that
transforms the state of the
scene at each time instant
into a fixed, canonical frame.

DynamicFusion: Reconstruction and Tracking of Non-rigid
Scenes in Real-Time. Newcombe, Fox, Seitz, CVPR’15.

https://youtu.be/ileZekcc IM



https://youtu.be/i1eZekcc_lM

Further Reading

e Chapter 11, Computer Vision, Richard Szeliski

* KinectFusion: Real-Time Dense Surface Mapping and Tracking. Newcombe et al.,
ISMAR’11

* ORB-SLAM https://webdiis.unizar.es/~raulmur/orbslam/



https://webdiis.unizar.es/~raulmur/orbslam/

