

CS 6384 Computer Vision
Professor Yu Xiang
The University of Texas at Dallas

Depth Perception

- Metric
 - The car is 10 meters away
- Ordinary
 - The tree is behind the car

Depth Cues

• Information for sensory stimulation that is relevant to depth perception

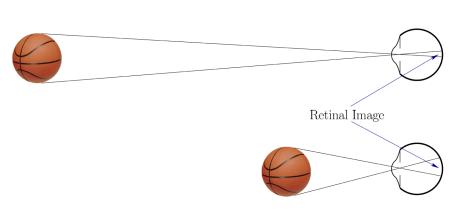
Monocular cues: single eye

• Stereo cues: both eyes

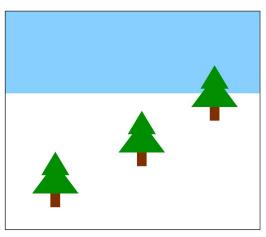
"Paris Street, Rainy Day," Gustave Caillebotte, 1877. Art Institute of Chicago

- Texture of the bricks
- Perspective projection
- Etc.

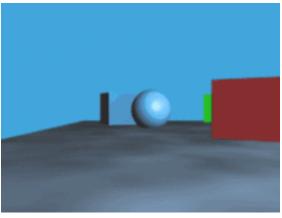
Monocular Depth Cues



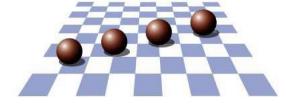
Retina image size

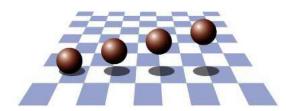


Height in visual field

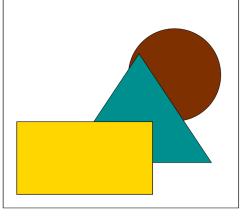


Motion parallax (relative difference in speed)
Further objects move slower





Shadow



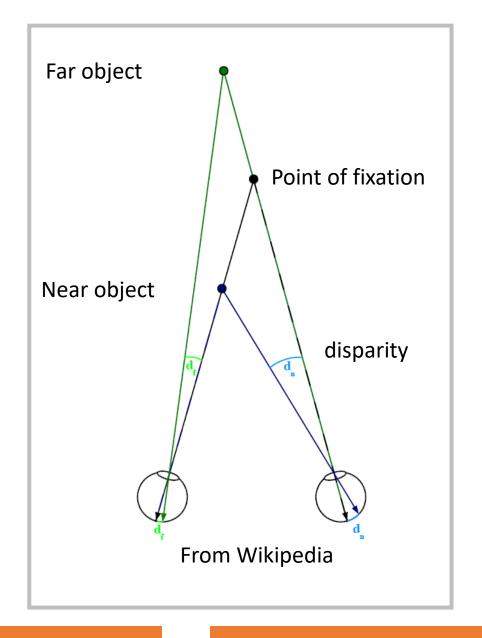
Occlusions

Image blur

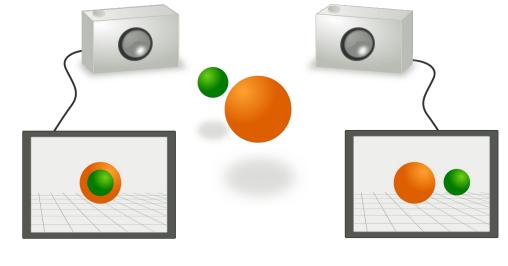
Atmospheric cue further away because it has lower contrast

Stereo Depth Cues

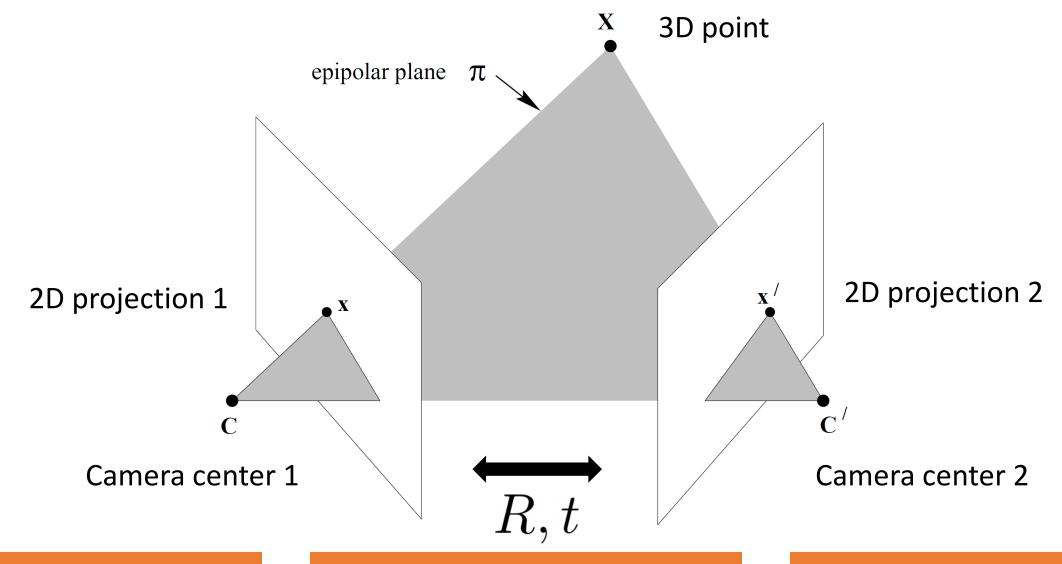
- Binocular disparity
 - Each eye provides a different viewpoint, which results in different images on the retina



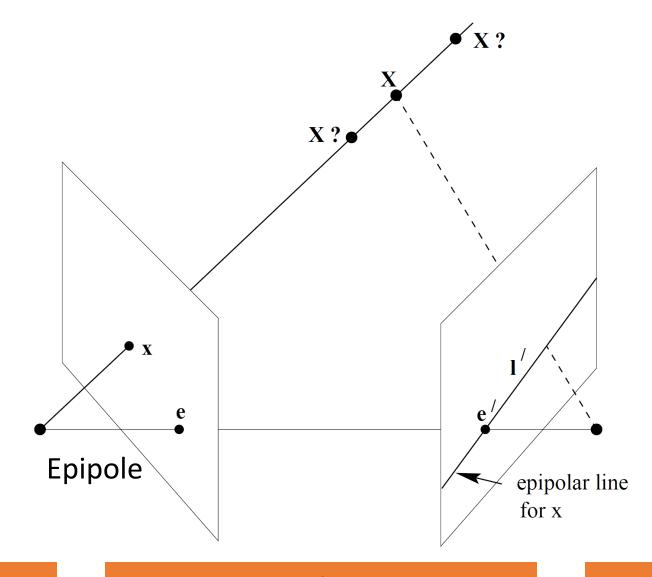
- The geometry of stereo vision
 - Given 2D images of two views
 - What is the relationship between pixels of the images?
 - Can we recover the 3D structure of the world from the 2D images?



Wikipedia



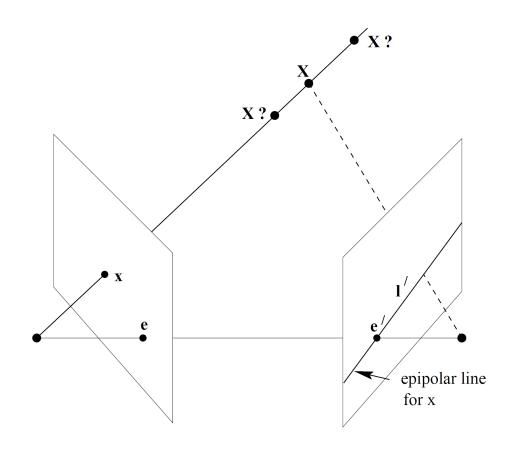
9/22/2021



Epipolar lines

Rotation and Translation between two views

What is the mapping for a point in one image to its epipolar line?



$$\mathbf{x} \mapsto \mathbf{l}'$$



Recall camera projection

$$P=K[R|\mathbf{t}]$$
 $\mathbf{x}=P\mathbf{X}$ Homogeneous coordinates

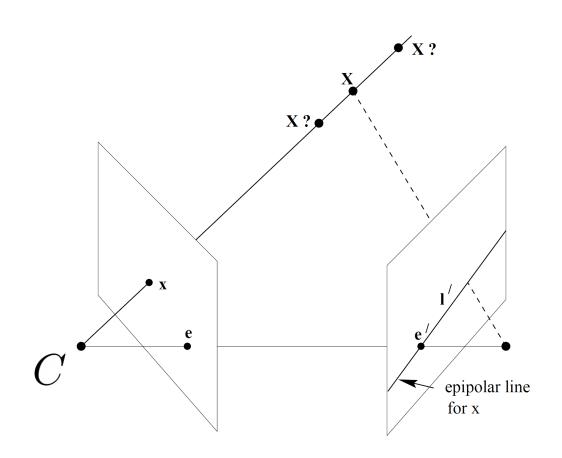
Backprojection

$$P^+\mathbf{x}$$
 and C are two points on the ray

$$P^+$$
 is the pseudo-inverse of $P, PP^+ = I$

$$P^+ = P^T (PP^T)^{-1}$$

$$\mathbf{X}(\lambda) = (1 - \lambda)P^{+}\mathbf{x} + \lambda C$$



$$P^+\mathbf{x}$$
 and C are two points on the ray

Project to the other image

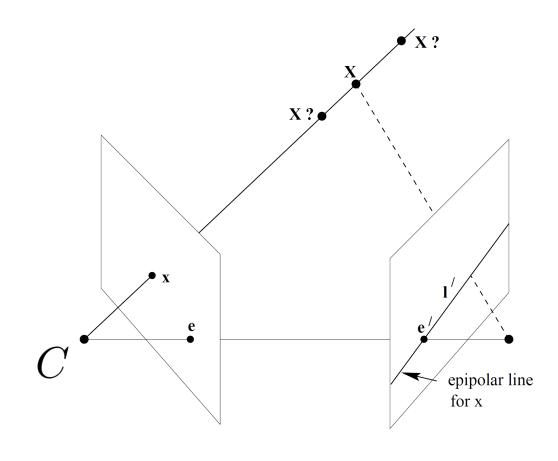
$$P'P^+\mathbf{x}$$
 and $P'C$

Epipolar line

$$\mathbf{l}' = (P'C) \times (P'P^{+}\mathbf{x})$$
Epipole $\mathbf{e}' = (P'C)$

$$\mathbf{l}' = [\mathbf{e}']_{\times} (P'P^{+}\mathbf{x})$$

Cross product matrix



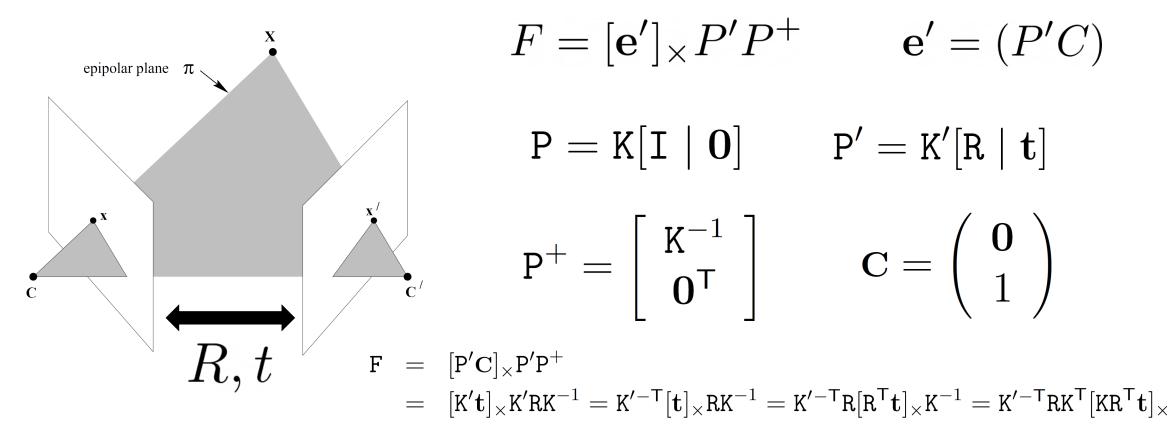
Epipolar line

$$\mathbf{l}' = [\mathbf{e}']_{\times}(P'P^+\mathbf{x}) = F\mathbf{x}$$

Fundamental matrix

$$F = [\mathbf{e}']_{\times} P' P^+$$

$$\mathbf{l}' = F\mathbf{x}$$



$$F = [\mathbf{e}']_{\times} P' P^+$$

$$\mathbf{e}' = (P'C)$$

$$P = K[I \mid O]$$

$$\mathtt{P}'=\mathtt{K}'[\mathtt{R}\mid \mathbf{t}]$$

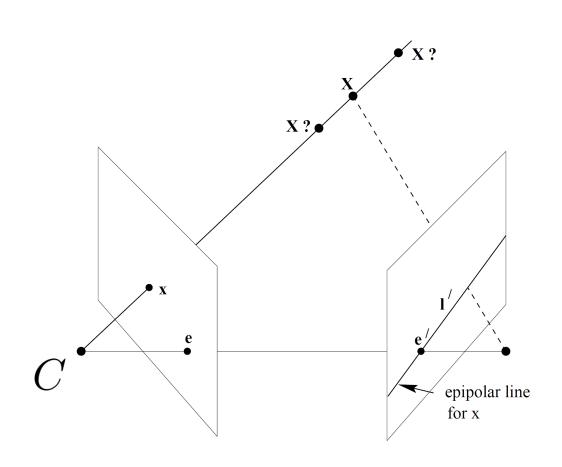
$$\mathbf{P}^+ = \begin{bmatrix} \mathbf{K}^{-1} \\ \mathbf{0}^\mathsf{T} \end{bmatrix} \qquad \mathbf{C} = \begin{pmatrix} \mathbf{0} \\ 1 \end{pmatrix}$$

$$\mathbf{C} = \begin{pmatrix} \mathbf{0} \\ 1 \end{pmatrix}$$

$$= Pigg(egin{array}{c} -R^\mathsf{T}\mathbf{t} \ 1 \end{array}igg) = KR^\mathsf{T}\mathbf{t} \qquad \mathbf{e}' = P'igg(egin{array}{c} \mathbf{0} \ 1 \end{array}igg) = K'\mathbf{t}$$

2/23/2022 Yu Xiang 14

Properties of Fundamental Matrix

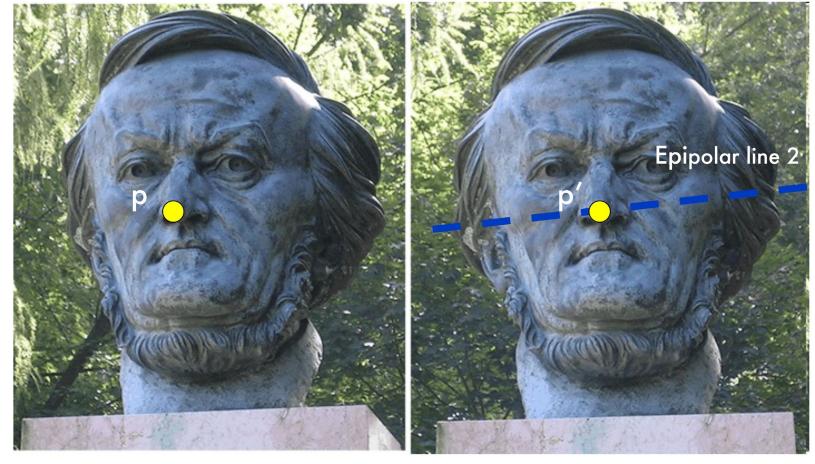


$$\mathbf{x'}$$
 is on the epiploar line $\mathbf{l'} = F\mathbf{x}$ $\mathbf{x'}^T F\mathbf{x} = 0$

- Transpose: if F is the fundamental matrix of (P, P'), then F^T is the fundamental matrix of (P', P)
- Epipolar line: $\mathbf{l'} = F\mathbf{x}$ $\mathbf{l} = F^T\mathbf{x'}$
- Epipole: $\mathbf{e'}^\mathsf{T} \mathbf{F} = \mathbf{0}$ $\mathbf{F} \mathbf{e} = \mathbf{0}$ $\mathbf{e'}^\mathsf{T} (\mathbf{F} \mathbf{x}) = (\mathbf{e'}^\mathsf{T} \mathbf{F}) \mathbf{x} = 0$ for all \mathbf{x}
- 7 degrees of freedom

$$\det \mathbf{F} = 0$$

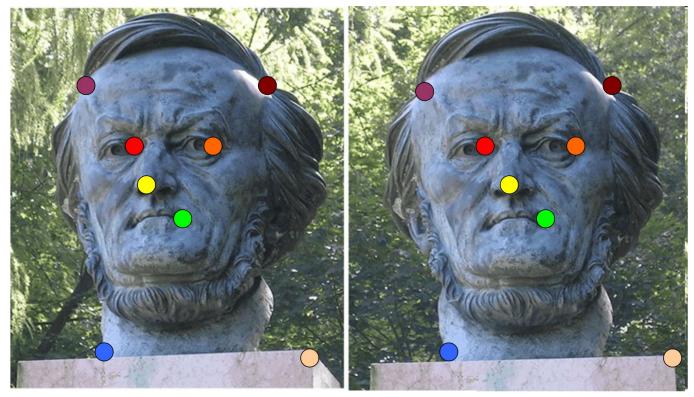
Why the Fundamental Matrix is Useful?



$$\mathbf{l}' = F\mathbf{p}$$

Estimating the Fundamental Matrix

• The 8-point algorithm



$$\mathbf{x}'^\mathsf{T} \mathbf{F} \mathbf{x} = 0$$

Estimating the Fundamental Matrix

$$\mathbf{x}'^{\mathsf{T}}\mathbf{F}\mathbf{x} = 0 \quad \mathbf{x} = (x, y, 1)^{\mathsf{T}} \quad \mathbf{x}' = (x', y', 1)^{\mathsf{T}}$$
$$x'xf_{11} + x'yf_{12} + x'f_{13} + y'xf_{21} + y'yf_{22} + y'f_{23} + xf_{31} + yf_{32} + f_{33} = 0$$
$$(x'x, x'y, x', y'x, y'y, y', x, y, 1) \mathbf{f} = 0$$

n correspondences

$$\mathbf{Af} = \begin{bmatrix} x_1'x_1 & x_1'y_1 & x_1' & y_1'x_1 & y_1'y_1 & y_1' & x_1 & y_1 & 1 \\ \vdots & \vdots \\ x_n'x_n & x_n'y_n & x_n' & y_n'x_n & y_n'y_n & y_n' & x_n & y_n & 1 \end{bmatrix} \mathbf{f} = \mathbf{0}$$

2/23/2022 Yu Xiang 1

Linear System

$$\begin{array}{c}
A\mathbf{f} = 0 \\
n \times 9 & 9 \times 1
\end{array}$$

- Find non-zero solutions
- If f is a solution, k×f is also a solution for $k \in \mathcal{R}$
- If the rank of A is 8, unique solution (up to scale)
- Otherwise, we can seek a solution $\|\mathbf{f}\| = 1$

$$\min \|A\mathbf{f}\| \qquad \qquad \text{Solution: } A = UDV^T \text{ sVD decomposition of A}$$
 Subject to $\|\mathbf{f}\| = 1$
$$\qquad \qquad n \times 9 \quad 9 \times 9 \quad 9 \times 9$$

f is the last column of V

A5.3 in HZ

2/23/2022

Estimating the Fundamental Matrix

• The singularity constraint $\det {\sf F} = 0$

$$\min \|F - F'\|$$
 Subject to $\det F' = 0$

$$F = UDV^T$$

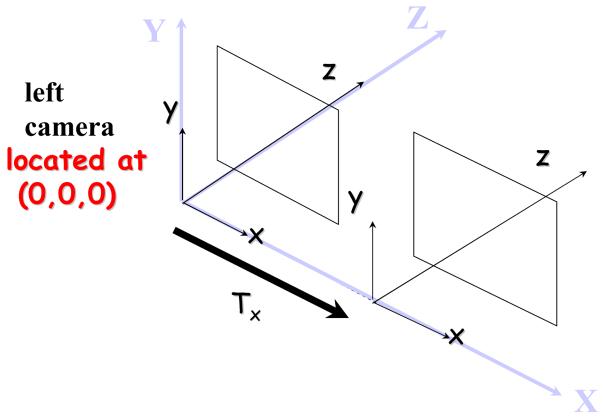
$$D = diag(r, s, t)$$

$$r \geq s \geq t$$

Solution:

$$\mathbf{F}' = \mathbf{U}\mathbf{diag}(r, s, 0)\mathbf{V}^\mathsf{T}$$

Special Case: A Stereo System

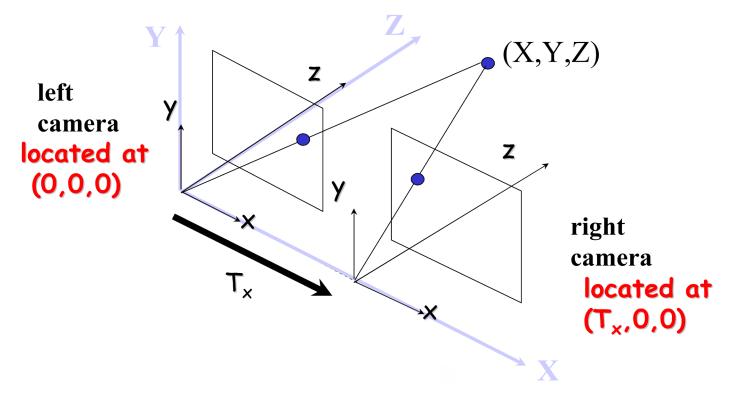


• The right camera is shifted by T_{x} (the stereo baseline)

The camera intrinsics are the same

right camera located at $(T_x, 0, 0)$

Special Case: A Stereo System



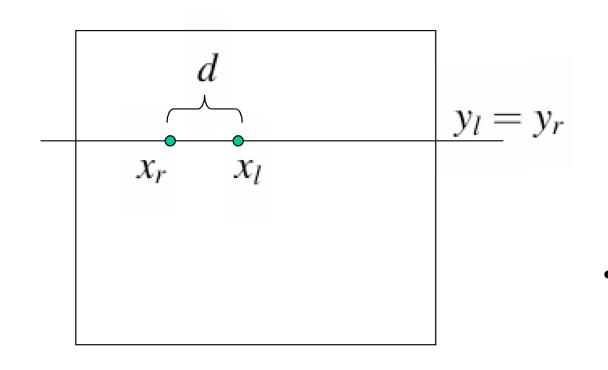
Left camera

$$x_l = f\frac{X}{Z} + p_x \qquad y_l = f\frac{Y}{Z} + p_y$$

Right camera

$$x_r = f \frac{X - T_x}{Z} + p_x$$
$$y_r = f \frac{Y}{Z} + p_y$$

Stereo Disparity



Disparity

$$d = x_l - x_r$$

$$= (f\frac{X}{Z} + p_x) - (f\frac{X - T_x}{Z} + p_x)$$

$$= f\frac{T_x}{Z}$$

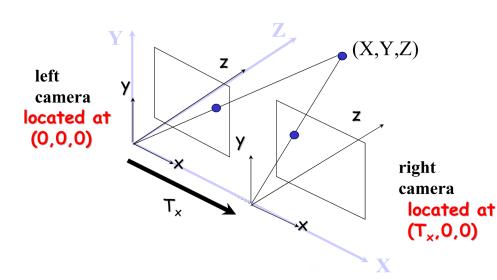
• Depth $Z=frac{T_x}{I}$

Disparity

Baseline

Recall motion parallax: near objects move faster (large disparity)

Special Case: A Stereo System



$$P = K[I \mid \mathbf{0}]$$
 $P' = K[I \mid \mathbf{t}]$

$$\mathbf{F} = [\mathbf{e}']_{\times} \mathbf{K}' \mathbf{R} \mathbf{K}^{-1} = \mathbf{K}'^{-\mathsf{T}} [\mathbf{t}]_{\times} \mathbf{R} \mathbf{K}^{-1} = \mathbf{K}'^{-\mathsf{T}} \mathbf{R} [\mathbf{R}^{\mathsf{T}} \mathbf{t}]_{\times} \mathbf{K}^{-1} = \mathbf{K}'^{-\mathsf{T}} \mathbf{R} \mathbf{K}^{\mathsf{T}} [\mathbf{e}]_{\times}$$

$$\mathbf{F} = [\mathbf{e}']_{\times} \mathbf{K} \mathbf{K}^{-1} = [\mathbf{e}']_{\times}$$

$$\mathbf{e}' = (P'C)$$
 $\mathbf{C} = \begin{pmatrix} \mathbf{0} \\ 1 \end{pmatrix}$

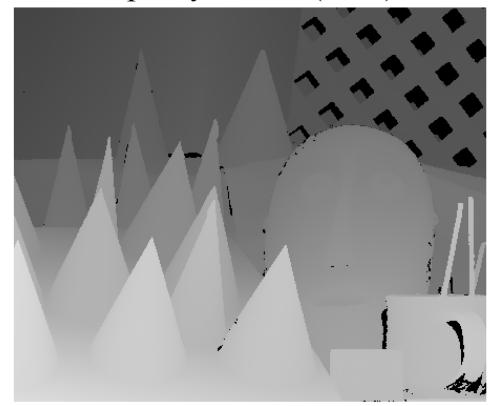
$$K = \begin{bmatrix} f_x & 0 & p_x \\ 0 & f_y & p_y \\ 0 & 0 & 1 \end{bmatrix} \quad \mathbf{e}' = \begin{bmatrix} f_x T_x \\ 0 \\ 0 \end{bmatrix} \quad F = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -f_x T_x \\ 0 & f_x T_x & 0 \end{bmatrix} \quad \mathbf{x}'^T F \mathbf{x} = 0$$

$$y = y'$$

2/23/2022 Yu Xiang 24

Stereo Example

Disparity values (0-64)



Note how disparity is larger (brighter) for closer surfaces.

$$d = f \frac{T_x}{Z}$$

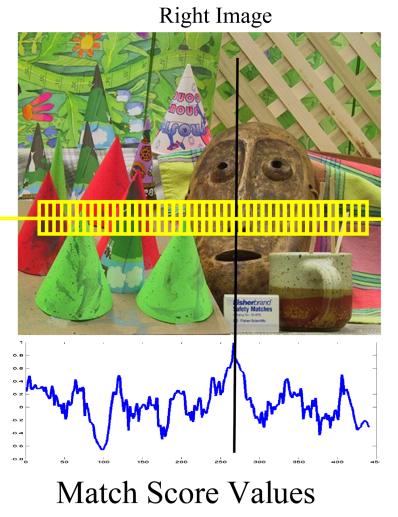
Computing Disparity

Left Image

Fishertzard
Saltry Matches
Starty Match

For a patch in left image

Compare with patches along same row in right image

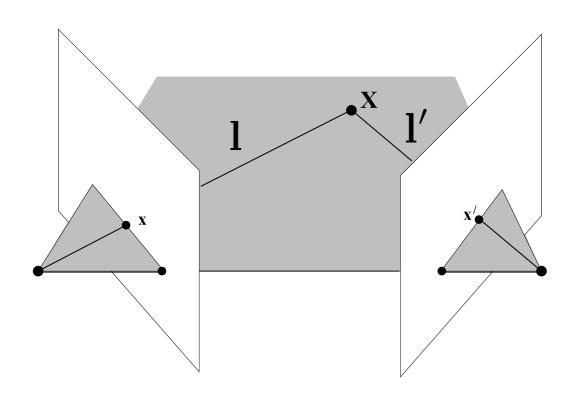


- Eipipolar lines are horizontal lines in stereo
- For general cases, we can find correspondences on eipipolar lines
- Depth from disparity

$$Z = f \frac{T_x}{d}$$

Triangulation

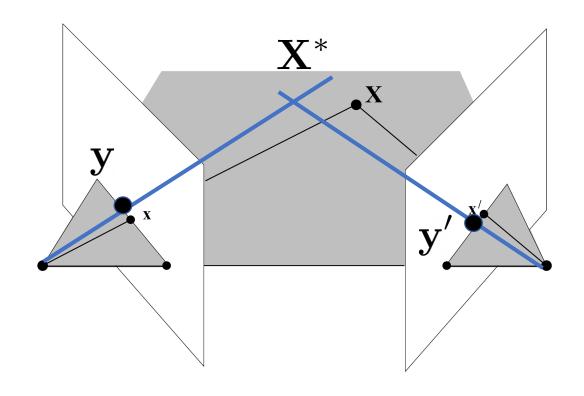
• Compute the 3D point given image correspondences



Intersection of two backprojected lines

$$X = 1 \times 1'$$

Triangulation



- In practice, we find the correspondences $\mathbf{y} \ \mathbf{y}'$
- The backprojected lines may not intersect
- Find X* that minimizes

$$d(\mathbf{y}, P\mathbf{X}^*) + d(\mathbf{y}', P'\mathbf{X}^*)$$

Projection matrix

Further Reading

• Stanford CS231A: Computer Vision, From 3D Reconstruction to Recognition, Lecture 5 https://web.stanford.edu/class/cs231a/syllabus.html

Multiview Geometry in Computer Vision, Richard Hartley and Andrew Zisserman,
 Chapter 9, Epipolar Geometry and Fundamental Matrix