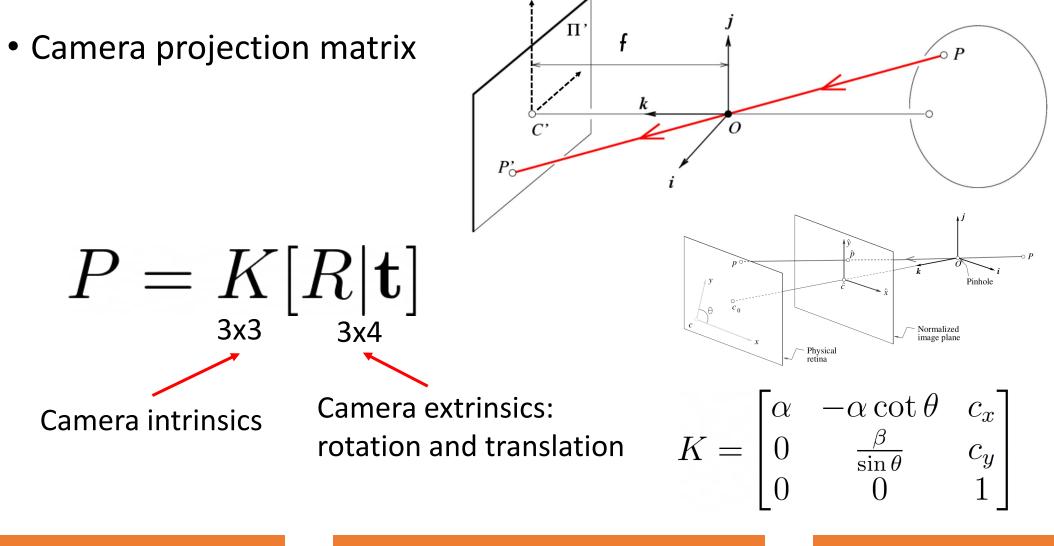


CS 6384 Computer Vision Professor Yu Xiang The University of Texas at Dallas

Some slides of this lecture are courtesy Silvio Savarese

Recap Camera Models

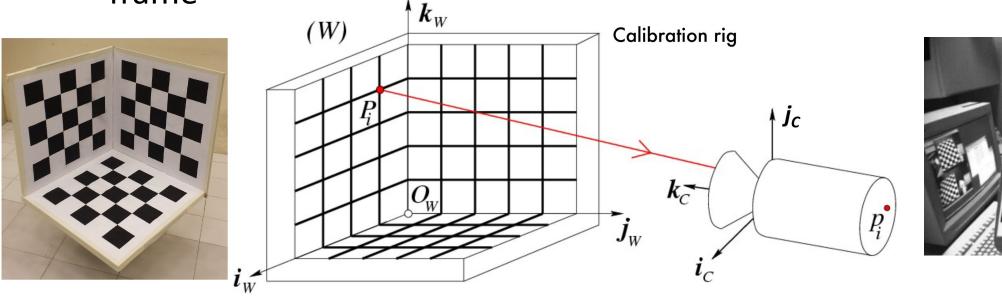


Camera Calibration

- Estimate the camera intrinsics and camera extrinsics $\ P = K |R| {f t}|$
- Why is this useful?
 - If we know K and depth, we can compute 3D points in camera frame
 - In stereo matching to compute depth, we need to know focal length
 - Camera pose tracking is critical in SLAM (Simultaneous Localization and Mapping)

Camera Calibration

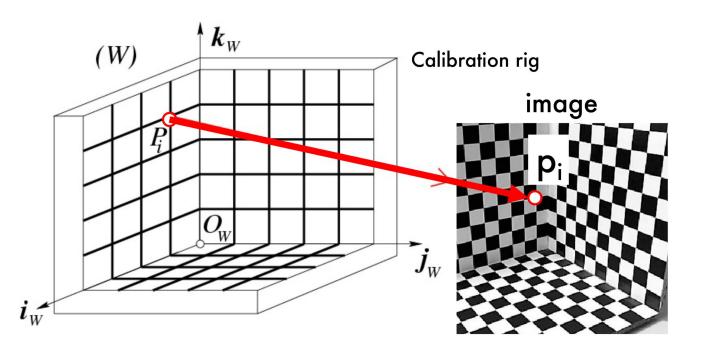
- Estimate the camera intrinsics and camera extrinsics $\ P = K[R|\mathbf{t}|$
- Idea: using images from the camera with a known world coordinate frame



Yu Xiang

checkerboard

Camera Calibration



Unknowns

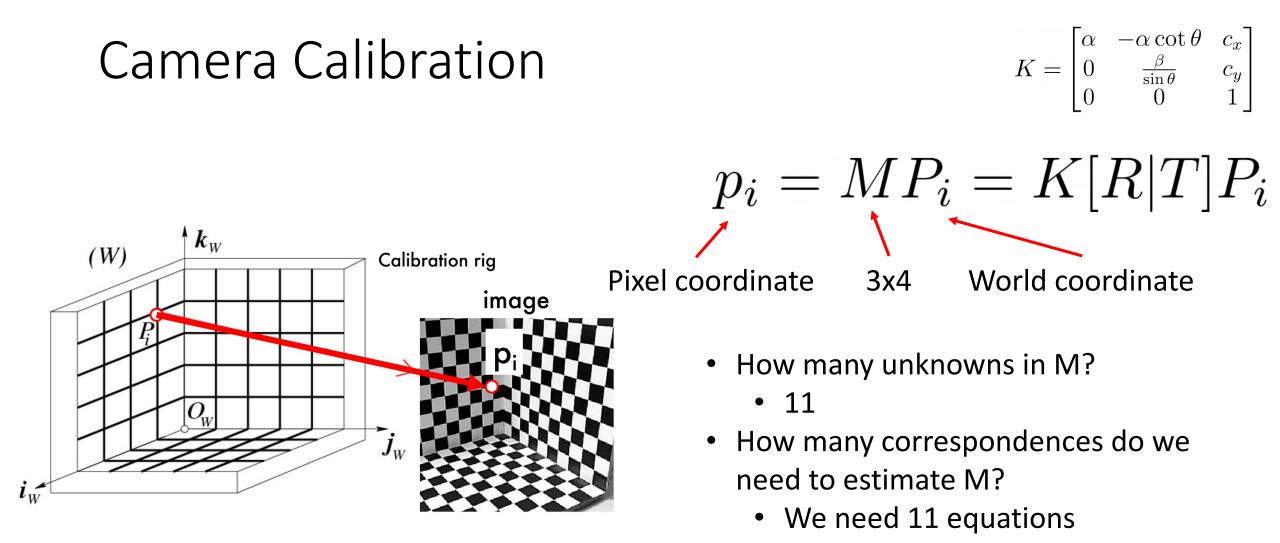
Camera intrinsics K

Camera extrinsics: R, Trotation and translation

Knowns

World coordinates P_1, \ldots, P_n

Pixel coordinates p_1, \ldots, p_n



- 6 correspondences
- More correspondences are better

$$p_i = MP_i = K[R|T]P_i$$

$$M = \begin{bmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \\ \mathbf{m}_3 \end{bmatrix} \begin{array}{c} 1 \times 4 \\ 1 \times 4 \\ 1 \times 4 \end{array} \quad MP_i = \begin{bmatrix} \mathbf{m}_1 P_i \\ \mathbf{m}_2 P_i \\ \mathbf{m}_3 P_i \end{bmatrix} \quad p_i = \begin{bmatrix} u_i \\ v_i \end{bmatrix} = \begin{bmatrix} \frac{\mathbf{m}_1 P_i}{\mathbf{m}_3 P_i} \\ \frac{\mathbf{m}_2 P_i}{\mathbf{m}_3 P_i} \end{bmatrix}$$

A pair of equations

$$u_i(m_3P_i) - m_1P_i = 0$$

 $v_i(m_3P_i) - m_2P_i = 0$

• Given n correspondences $p_i = \begin{bmatrix} u_i \\ v_i \end{bmatrix} \leftrightarrow P_i$

$$u_1(m_3P_1) - m_1P_1 = 0$$
$$v_1(m_3P_1) - m_2P_1 = 0$$

2n equations

.

$$u_n(m_3P_n) - m_1P_n = 0$$

 $v_n(m_3P_n) - m_2P_n = 0$

$$\begin{bmatrix} P_1^T & 0^T & -u_1 P_1^T \\ 0^T & P_1^T & -v_1 P_1^T \\ \vdots & & \\ P_n^T & 0^T & -u_n P_n^T \\ 0^T & P_n^T & -v_n P_n^T \end{bmatrix} \begin{bmatrix} m_1^T \\ m_2^T \\ m_3^T \end{bmatrix} = \mathbf{P}m = 0$$

$$2n \times 12 \qquad 12 \times 1$$

How to solve this linear system?

Linear System

$\mathbf{P}m = 0$ $2n \times 12 \ 12 \times 1$

- Find non-zero solutions
- If m is a solution, k×m is also a solution for $k \in \mathcal{R}$
- We can seek a solution $\|m\| = 1$

Computer Vision

$$p_i = MP_i = K[R|T]P_i$$

How to extract K, R and T from M?

$$K = \begin{bmatrix} \alpha & -\alpha \cot \theta & c_x \\ 0 & \frac{\beta}{\sin \theta} & c_y \\ 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{R} = \begin{bmatrix} \mathbf{r}_1^T \\ \mathbf{r}_2^T \\ \mathbf{r}_3^T \end{bmatrix} \qquad \mathbf{T} = \begin{bmatrix} \mathbf{t}_x \\ \mathbf{t}_y \\ \mathbf{t}_z \end{bmatrix}$$
3 rows

 $\mathbf{P}m = 0$

m is the last column of V

$$m o M$$
 . Up to scale

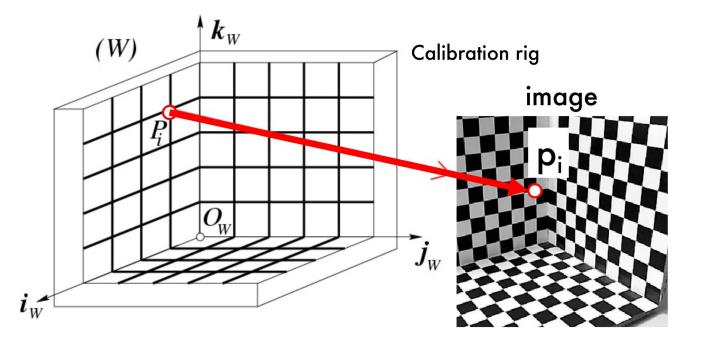
$$\rho M = \begin{bmatrix} \alpha r_1^T - \alpha \cot \theta r_2^T + c_x r_3^T & \alpha t_x - \alpha \cot \theta t_y + c_x t_z \\ \frac{\beta}{\sin \theta} r_2^T + c_y r_3^T & \frac{\beta}{\sin \theta} t_y + c_y t_z \\ r_3^T & t_z \end{bmatrix}$$

Scale

$$M = \frac{1}{\rho} \begin{bmatrix} \alpha r_1^T - \alpha \cot \theta r_2^T + c_x r_3^T & \alpha t_x - \alpha \cot \theta t_y + c_x t_z \\ \frac{\beta}{\sin \theta} r_2^T + c_y r_3^T & \frac{\beta}{\sin \theta} t_y + c_y t_z \\ r_3^T & t_z \end{bmatrix} = \begin{bmatrix} A & b \end{bmatrix} = \begin{bmatrix} a_1^T \\ a_2^T \\ a_3^T \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

The rows of a rotation matrix are unit-length, perpendicular to each other

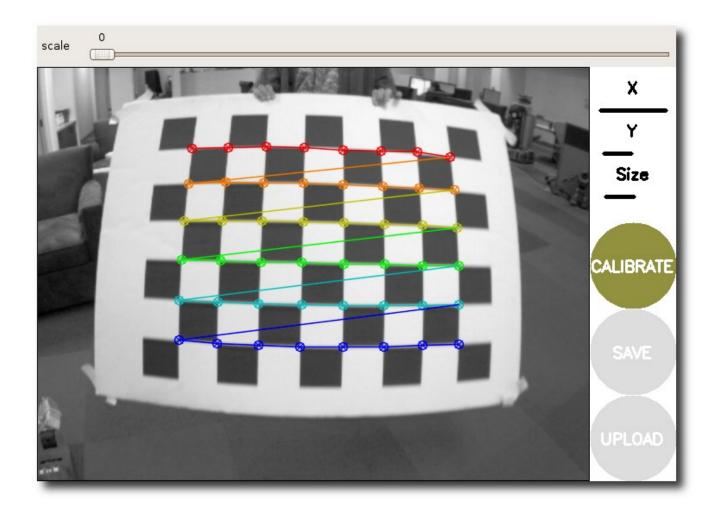
Intrinsics
$$\rho = \pm \frac{1}{\|a_3\|}$$
Extrinsics $K = \begin{bmatrix} \alpha & -\alpha \cot \theta & c_x \\ 0 & \frac{\beta}{\sin \theta} & c_y \\ 0 & 0 & 1 \end{bmatrix}$ $c_x = \rho^2(a_1 \cdot a_3)$ $r_1 = \frac{a_2 \times a_3}{\|a_2 \times a_3\|}$ $K = \begin{bmatrix} \alpha & -\alpha \cot \theta & c_x \\ 0 & \frac{\beta}{\sin \theta} & c_y \\ 0 & 0 & 1 \end{bmatrix}$ $c_x = \rho^2(a_1 \cdot a_3)$ $r_1 = \frac{a_2 \times a_3}{\|a_2 \times a_3\|}$ $K = \begin{bmatrix} \alpha & -\alpha \cot \theta & c_x \\ 0 & \frac{\beta}{\sin \theta} & c_y \\ 0 & 0 & 1 \end{bmatrix}$ $\theta = \cos^{-1} \left(-\frac{(a_1 \times a_3) \cdot (a_2 \times a_3)}{\|a_1 \times a_3\| \cdot \|a_2 \times a_3\|} \right)$ $r_2 = r_3 \times r_1$ $FP, Computer Vision: A $\alpha = \rho^2 \|a_1 \times a_3\| \sin \theta$ $r_3 = \rho a_3$ Modern Approach, Sec. 3.2.2 $\beta = \rho^2 \|a_2 \times a_3\| \sin \theta$ $T = \rho K^{-1}b$$



$\mathbf{P}m = 0$

All 3D points should **NOT** be on the same plane. Otherwise, no solution

FP, Computer Vision: A Modern Approach, Sec. 1.3

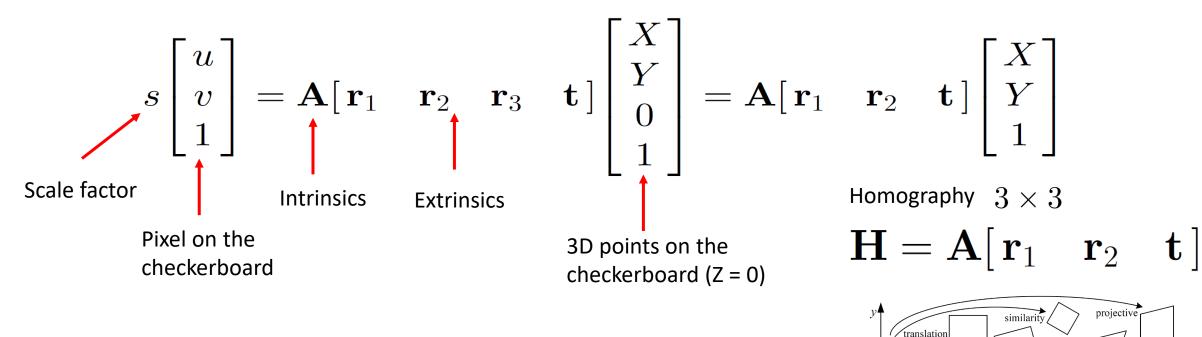


Harris Corner Detection

http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration

2/21/2022

- 3D point $P = \begin{bmatrix} X \\ Y \\ 0 \end{bmatrix}$ Homography between the model plane and its image



A Flexible New Technique for Camera Calibration. Zhengyou Zhang, TPAMI, 2000.

Euclidean

affine

- Homography between the model plane and its image
 - Given the correspondences, we can estimate H $\mathbf{H} = \mathbf{A} [\mathbf{r}_1 \quad \mathbf{r}_2 \quad \mathbf{t}]$

 $\mathbf{H} = \begin{bmatrix} \mathbf{h}_1 & \mathbf{h}_2 & \mathbf{h}_3 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{h}_1 & \mathbf{h}_2 & \mathbf{h}_3 \end{bmatrix} = \lambda \mathbf{A} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{t} \end{bmatrix}$

 $r_1 \ r_2$ are orthogonal and with unit length

2 equations for intrinsics

$$\mathbf{h}_1^T \mathbf{A}^{-T} \mathbf{A}^{-1} \mathbf{h}_2 = 0$$
$$\mathbf{h}_1^T \mathbf{A}^{-T} \mathbf{A}^{-1} \mathbf{h}_1 = \mathbf{h}_2^T \mathbf{A}^{-T} \mathbf{A}^{-1} \mathbf{h}_2$$

Given n images, 2n equations for A

A Flexible New Technique for Camera Calibration. Zhengyou Zhang, TMAPI. 2000.

Solve the linear system for A

2/21/2022

• Homography between the model plane and its image

$$[\mathbf{h}_1 \quad \mathbf{h}_2 \quad \mathbf{h}_3] = \lambda \mathbf{A} [\mathbf{r}_1 \quad \mathbf{r}_2 \quad \mathbf{t}]$$

Extrinsics

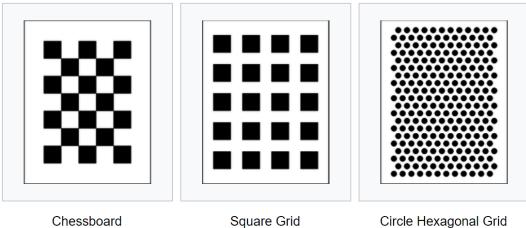
$$\mathbf{r}_1 = \lambda \mathbf{A}^{-1} \mathbf{h}_1$$
 $\mathbf{r}_2 = \lambda \mathbf{A}^{-1} \mathbf{h}_2$ $\mathbf{r}_3 = \mathbf{r}_1 \times \mathbf{r}_2$ $\mathbf{t} = \lambda \mathbf{A}^{-1} \mathbf{h}_3$

Afterwards, refine all the parameters including lens distortion parameters

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \|\mathbf{m}_{ij} - \hat{\mathbf{m}}(\mathbf{A}, \mathbf{R}_i, \mathbf{t}_i, \mathbf{M}_j)\|^2$$
2D projection

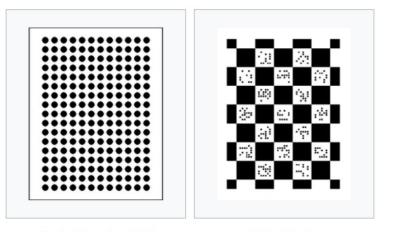
A Flexible New Technique for Camera Calibration. Zhengyou Zhang, TPAMI, 2000.

Calibration Patterns



Chessboard

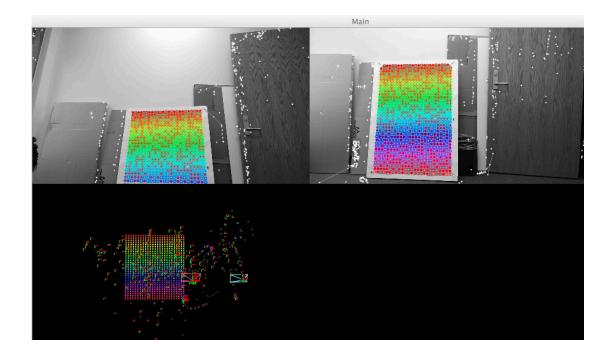
Circle Hexagonal Grid



Circle Regular Grid

ECoCheck

https://boofcv.org/index.php?title=Tutorial_Camera_Calibration

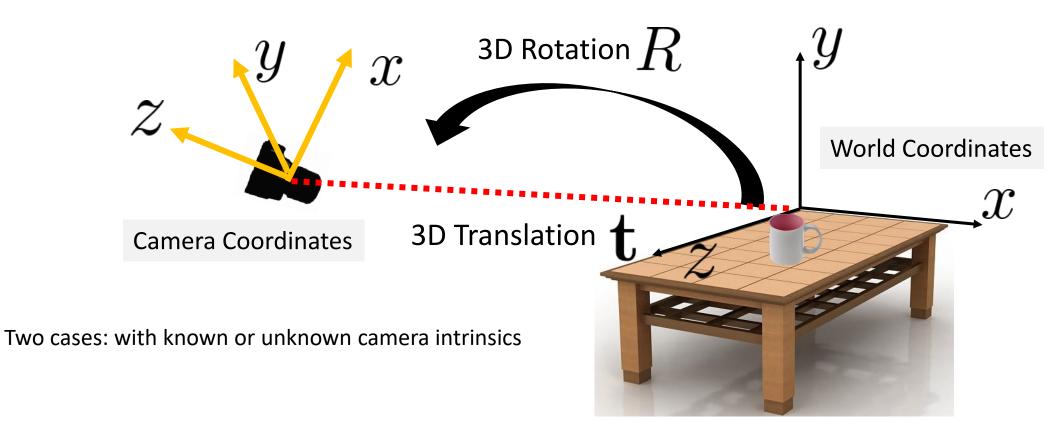


https://github.com/arpg/Documentation/tree/master/Calibration

2/21/2022

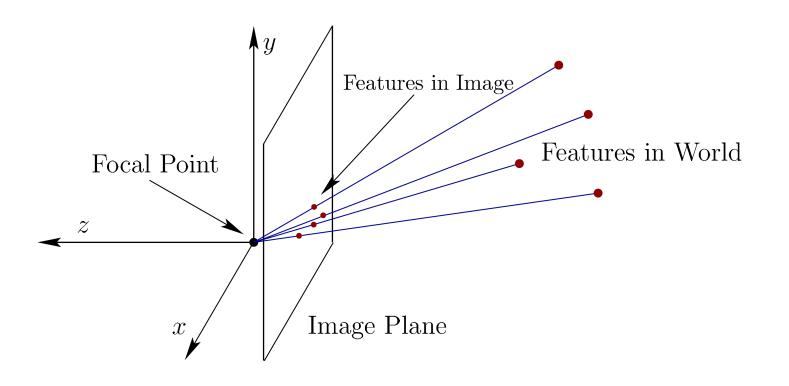
Camera Pose Estimation

• Estimate the 3D rotation and 3D translation of a camera with respect to some world coordinate frame



Camera Pose Estimation

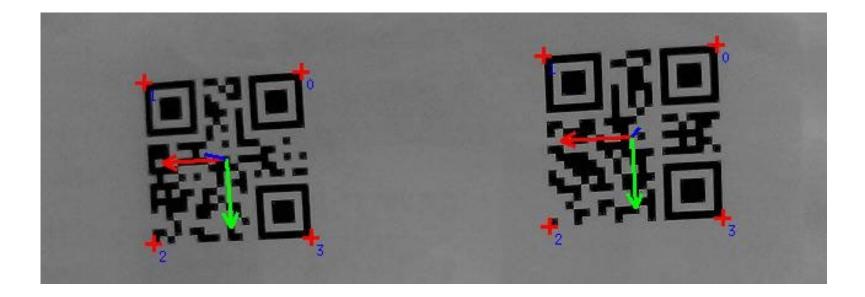
• Using visibility of features in the real world



- Natural Features
 - No setup cost
 - A difficult problem
- Artificial features
 - Print a special tag

QR Code for Pose Estimation

• Using the 4 corners of a QR code as features



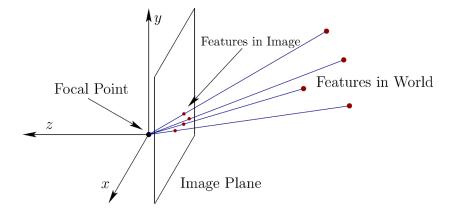
https://visp-doc.inria.fr/doxygen/visp-daily/tutorial-pose-estimation-qrcode.html

The Perspective-n-Point (PnP) Problem

- Given/known variables
 - A set of n 3D points in the world coordinates $p_{m{w}}$
 - Their projections (2D coordinates) on an image p_c
 - Camera intrinsics K
- Unknown variables
 - 3D rotation of the camera with respective to the world coordinates R
 - 3D translation of the camera T

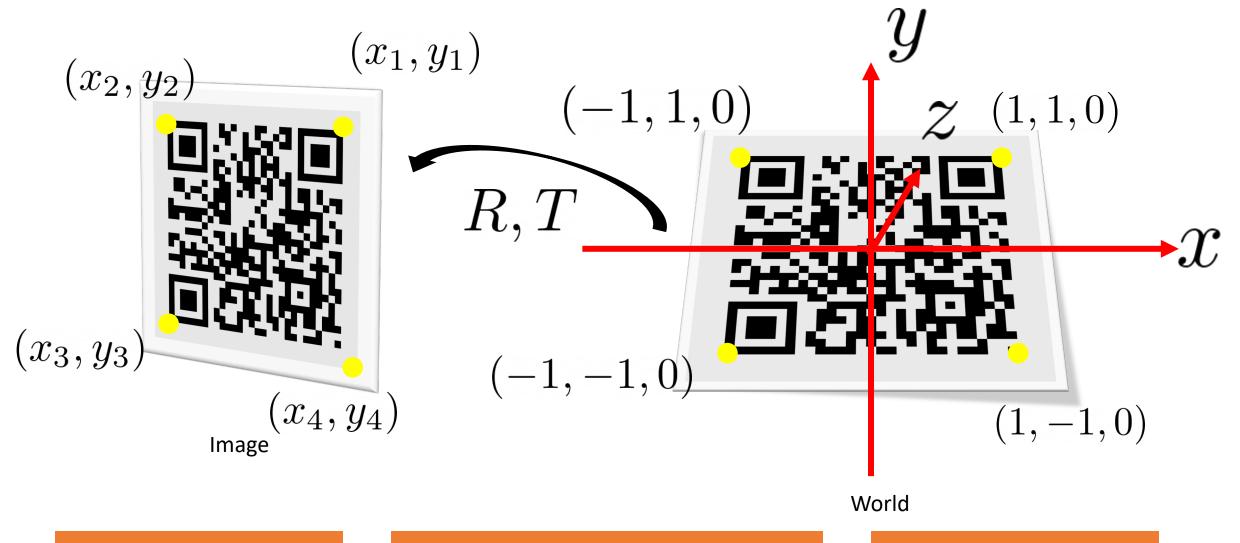
$$s p_c = K \begin{bmatrix} R & T \end{bmatrix} p_w$$

$$s \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f_x & \gamma & u_0 \\ 0 & f_y & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$
Unknown



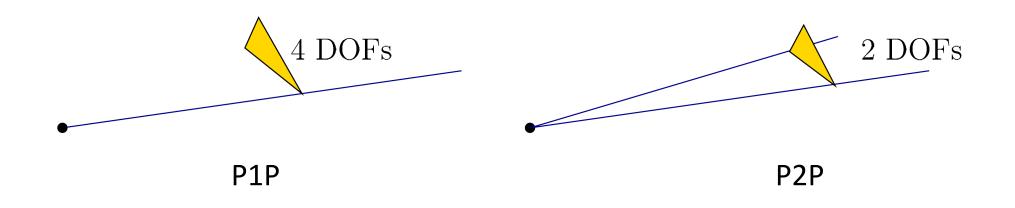
г ¬

The PnP Problem with QR Code



The Perspective-n-Point (PnP) Problem

- 6 degrees of freedom (DOFs)
 - 3 DOF rotation, 3 DOF translation
- Each feature that is visible eliminates 2 DOFs

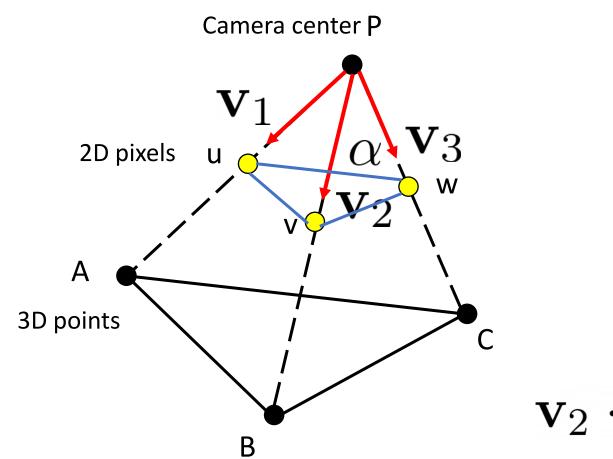


The PnP Problem

- Many different algorithms to solve the PnP problem
- General idea
 - Retrieve the coordinates of the 3D points in the camera coordinate system \mathbf{p}_i^c
 - Compute rotation and translation that align the world coordinates and the camera coordinates

$$\mathbf{p}_i^w \xrightarrow{R,T} \mathbf{p}_i^c$$

P3P

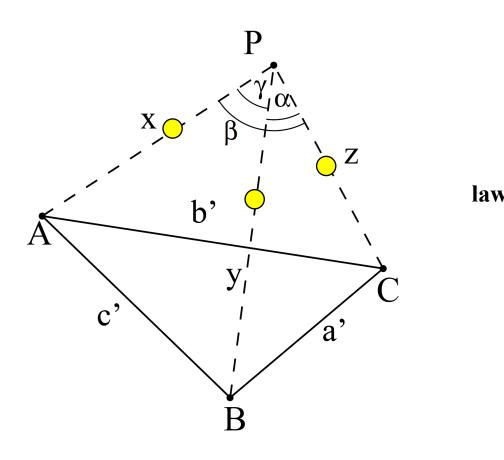


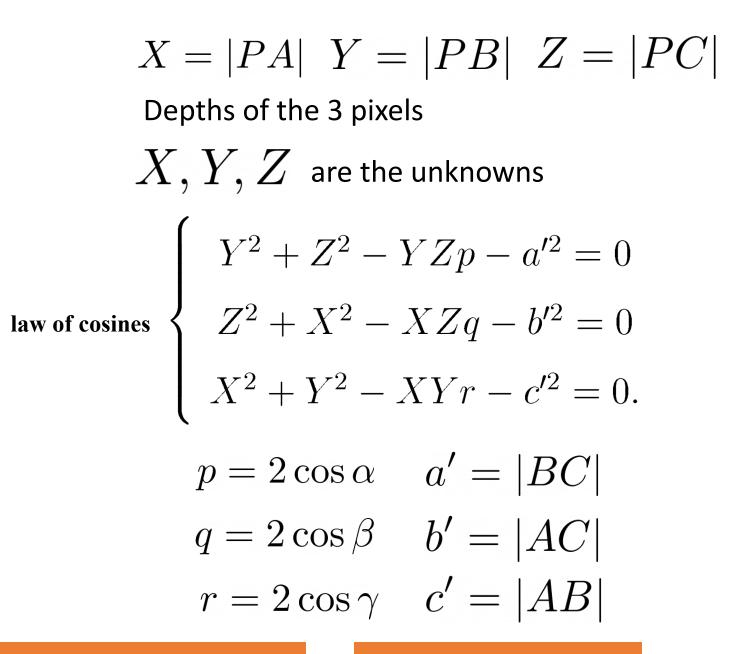
$$\mathbf{v}_1 = K^{-1}\mathbf{u}$$
$$\mathbf{v}_2 = K^{-1}\mathbf{v}$$

$$\mathbf{v}_3 = K^{-1}\mathbf{w}$$

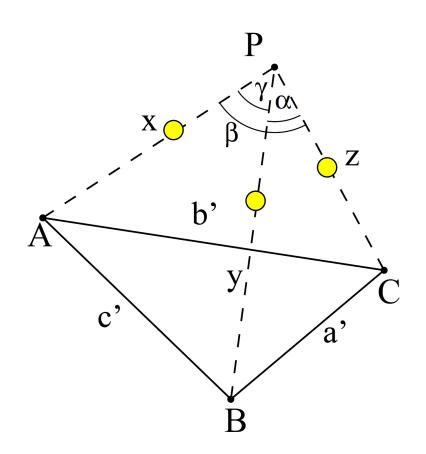
$\mathbf{v}_2 \cdot \mathbf{v}_3 = \|\mathbf{v}_2\| \|\mathbf{v}_3\| \cos \alpha$

P3P





10/6/2021



- Find the solutions for X, Y, Z (depth of the 3 pixels)
- Obtain the coordinates of A, B, C in camera frame
- Compute R and T using the coordinates of A, B, C in camera frame and in world frame

Rotation and Translation from Two Point Sets

$$\mathbf{p}_i^w \xrightarrow{R,T} \mathbf{p}_i^c$$

Closed-form solution

K.S. Arun, T.S. Huang, and S.D. Blostein. Least-Squares Fitting of Two 3-D Points Sets. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 9(5):698–700, 1987.

$$\Sigma^{2} = \sum_{i=1}^{N} \| p_{i}' - (Rp_{i} + T) \|^{2}.$$

Or https://cs.gmu.edu/~kosecka/cs685/cs685-icp.pdf

• EPnP: uses 4 control points c_j , $j = 1, \ldots, 4$

3D coordinates in the world frame $\mathbf{p}_i^w = \sum_{j=1}^4 \alpha_{ij} \mathbf{c}_j^w$

 $\mathbf{c}_{ij}\mathbf{c}_{j}^{w}$ Known

Weights
$$\displaystyle{\sum_{j=1}^4 lpha_{ij} = 1}$$
 Known

3D coordinates in the camera frame $\mathbf{p}_i^c = \sum_{i=1}^4 \alpha_{ij} \mathbf{c}_j^c$

Unknown

EPnP: An Accurate O(n) Solution to the PnP Problem. Lepetit et al., IJCV'09.

• Projection of the points in the camera frame

$$\forall i , w_i \begin{bmatrix} \mathbf{u}_i \\ 1 \end{bmatrix} = K \mathbf{p}_i^c = K \sum_{j=1}^4 \alpha_{ij} \mathbf{c}_j^c$$
$$\forall i , w_i \begin{bmatrix} u_i \\ v_i \\ 1 \end{bmatrix} = \begin{bmatrix} f_u & 0 & u_c \\ 0 & f_v & v_c \\ 0 & 0 & 1 \end{bmatrix} \sum_{j=1}^4 \alpha_{ij} \begin{bmatrix} x_j^c \\ y_j^c \\ z_j^c \end{bmatrix}$$

Unknown $\left\{ (x_{j}^{c}, y_{j}^{c}, z_{j}^{c}) \right\}_{j=1,...,4}$ $\{ u \}_{j=1,...,4}$

$$w_i\}_{i=1....n}$$

$$w_i = \sum_{j=1}^4 \alpha_{ij} z_j^c$$

EPnP: An Accurate O(n) Solution to the PnP Problem. Lepetit et al., IJCV'09.

2/21/2022

$$\forall i, w_i \begin{bmatrix} u_i \\ v_i \\ 1 \end{bmatrix} = \begin{bmatrix} f_u & 0 & u_c \\ 0 & f_v & v_c \\ 0 & 0 & 1 \end{bmatrix} \sum_{j=1}^4 \alpha_{ij} \begin{bmatrix} x_j^c \\ y_j^c \\ z_j^c \end{bmatrix}$$
$$w_i = \sum_{j=1}^4 \alpha_{ij} z_j^c$$

$$\sum_{j=1}^{4} \alpha_{ij} f_u x_j^c + \alpha_{ij} (u_c - u_i) z_j^c = 0$$
$$\sum_{j=1}^{4} \alpha_{ij} f_v y_j^c + \alpha_{ij} (v_c - v_i) z_j^c = 0$$

Jnknown
$$\left\{ (x_j^c, y_j^c, z_j^c)
ight\}_{j=1,\dots,4}$$

 $\mathbf{Mx} = \mathbf{0} \qquad \mathbf{x} = \begin{bmatrix} \mathbf{c}_1^{c \top}, \mathbf{c}_2^{c \top}, \mathbf{c}_3^{c \top}, \mathbf{c}_4^{c \top} \end{bmatrix}^{\top} 12 \times 1$

M is a $2n \times 12$ matrix

EPnP: An Accurate O(n) Solution to the PnP Problem. Lepetit et al., IJCV'09.

2/21/2022

- Solve $\mathbf{M}\mathbf{x} = \mathbf{0}$ to obtain $\mathbf{x} = [\mathbf{c}_1^{c\, op}, \mathbf{c}_2^{c\, op}, \mathbf{c}_3^{c\, op}, \mathbf{c}_4^{c\, op}]^{ op}$ See. Lepetit et al., IJCV'09
- Compute 3D coordinates in camera frame $\mathbf{p}_i^c = \sum_{i=1}^4 \alpha_{ij} \mathbf{c}_j^c$
- We know the 3D coordinates in world frame $\mathbf{p}_i^w = \sum_{j=1}^{4} \alpha_{ij} \mathbf{c}_j^w$
- Compute R and T using the two sets of 3D coordinates $\mathbf{p}_i^w \xrightarrow{R,T} \mathbf{p}_i^c$

EP*n*P: An Accurate O(n) Solution to the P*n*P Problem. Lepetit et al., IJCV'09.

PnP in practice

 SolvePnPMethod in OpenCV

SolvePnPMethod

enum cv::SolvePnPMethod

#include <opencv2/calib3d.hpp>

Enumerator	
SOLVEPNP_ITERATIVE Python: cv.SOLVEPNP_ITERATIVE	
SOLVEPNP_EPNP Python: cv.SOLVEPNP_EPNP	EPnP: Efficient Perspective-n-Point Camera Pose Estimation [125].
SOLVEPNP_P3P Python: cv.SOLVEPNP_P3P	Complete Solution Classification for the Perspective-Three-Point Problem [80].
SOLVEPNP_DLS Python: cv.SOLVEPNP_DLS	Broken implementation. Using this flag will fallback to EPnP. A Direct Least-Squares (DLS) Method for PnP [101]
SOLVEPNP_UPNP Python: cv.SOLVEPNP_UPNP	Broken implementation. Using this flag will fallback to EPnP. Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation [169]
SOLVEPNP_AP3P Python: cv.SOLVEPNP_AP3P	An Efficient Algebraic Solution to the Perspective-Three-Point Problem [114].
SOLVEPNP_IPPE Python: cv.SOLVEPNP_IPPE	Infinitesimal Plane-Based Pose Estimation [46] Object points must be coplanar.
SOLVEPNP_IPPE_SQUARE Python: cv.SOLVEPNP_IPPE_SQUARE	Infinitesimal Plane-Based Pose Estimation [46] This is a special case suitable for marker pose estimation. 4 coplanar object points must be defined in the following order: • point 0: [-squareLength / 2, squareLength / 2, 0] • point 1: [squareLength / 2, squareLength / 2, 0] • point 2: [squareLength / 2, -squareLength / 2, 0] • point 3: [-squareLength / 2, -squareLength / 2, 0]
SOLVEPNP_SQPNP Python: cv.SOLVEPNP_SQPNP	SQPnP: A Consistently Fast and Globally OptimalSolution to the Perspective-n-Point Problem [208].

QR Code Pose Tracking Example

https://levelup.gitconnected.com/qr-code-scanner-in-kotlin-e15dd9bfbb1f

Further Reading

- Stanford CS231A: Computer Vision, From 3D Reconstruction to Recognition, Lecture 3 <u>https://web.stanford.edu/class/cs231a/syllabus.html</u>
- A Flexible New Technique for Camera Calibration. Zhengyou Zhang, TPAMI. 2000.
- EPnP: An Accurate O(n) Solution to the PnP Problem. Lepetit et al., IJCV'09.