
12/10/2025
Zaaim Rahman, Maunika Achanta,
Nivedh Koya, Wafee Choudhury

Applying
Reinforcement
Learning to Robotic
Dart Throwing

1

Overview Introduction (01)

Architecture (02)

Simulation Setup & Training (03)

Robot Control (04)

Demo (05)

Results and Evaluations (06)

2
Conclusion and Future Work (07)

Introduction
● Abstract: Our project centers around applying reinforcement learning (RL) to

a dart-throwing application to test a robot arm’s accuracy in throwing

projectiles.

● Reinforcement Learning needed for delayed-reward dart throwing,

where early arm motions give no immediate feedback

● PyBullet simulation with SO-101 arm using two-stage training: dense

rewards for throw mechanics, sparse rewards for target accuracy

● Integration of 6D pose estimation and a learned velocity/torque

controller for real-world deployment

3

Architecture

Reinforcement
Learning
Environment

● Mimic the real dynamics of the
robot

● Approximate dart behaviour

● Train the robot in the simulated
environment

● Store trained models for testing

● Transfer policy for testing on
real SO101-Arm

4

Deploying Policy to
SO101-Arm

Training Algorithm
to Train Policy

Components

PyBullet

Stablebaselines3 +
Gymnasium

LeRobot API

Standardized implementations

of reinforcement learning

environments to apply to

custom environments

A wrapper around the

FeeTech STS3215 Motor

specification table for motor

control

A physics simulation library

using the Bullet 2.X Engine

with Python bindings.

5

Simulation Environment

Key activities

Utilized PyBullet and URDF Files

SO101-Arm URDF pulled
from GitHub repo

Create URDF file for board
and dart

URDF
Files

Challenges

● Limitations of aerodynamic
simulation of dart fins

● Motor speed limitation
● Joint inconsistencies

Develop simulation environment to
allow the robot arm to learn to throw Develop controller to

control both simulated
arm and real arm

Simulation
Debugging

Develop classes for RobotAgent
and Environments to reset to
initial state

Collision detection for rewards

Initial
State

6

7

Reward Functions
Initial Reward
01

Rewards were given
based on the position,
orientation, linear
velocity, and angular
velocity of the dart.

 Shoulder Panning
02

The model would
always tend to the left
side when throwing
which caused it to lose
the dart.

Velocity Loop-Hole
03

The model realized it
could oscillate along
the Z axis to
accumulate linear
velocity reward,
solved by adding a
discount factor over
time

 Release Angle
04

The release angle was
optimized to 45
degrees in the
simulation but did not
translate well in real
life. Solved by adding
reward for desired
angle.

Time Delta Limit
05

The real robot’s
motors could not keep
up with the time delta
decided by the physics
simulation. Solved by
creating buffertime
between simulation
steps.

Training Setup

7

The trajectory after release does not change the reward at all
⇒

The state of releasing the dart is associated with the reward

Observations Actions
Joint Positions

+
Joint Velocities

Joint Positions
+

Boolean Release

SO101FollowerIIJoint Maximum
Velocity

Current Joint
Velocities

Memory Table
API in LeRobot

FeeTech
STS3215 Spec

Robot Control

FeeTech specification
for motor memory
table

self.bus.sync_read()
self.bus.sync_write()

“Present_Velocities”
At Byte 58

“Goal_Velocity”
At Byte 46

Wrapper class to extend
SO101Follower Class

Can be used to
manipulate motor
properties

Internal functions used to
read/write using UART
adapter packets with
motors

This is the key to memory
table mapping for
receiving joint velocities

This is the key to
memory mapping for
setting the goal
velocity of joints

Allow to easily
transfer Policy

Write delay required

Test for moving speed

8

Demo

9

10

https://docs.google.com/file/d/185ORnTumGqgp4u7BFJuWn9dmpStsk_zr/preview
https://docs.google.com/file/d/1WnHfy0DQnfQSkqsI8k1CT5NeBFsmh0HI/preview

Results

Tell potential investors how you plan to leverage

momentum after your launch.

Tell potential investors how you plan to leverage

momentum after your launch.

Tell potential investors how you plan to leverage

momentum after your launch.

1

2

3

Successfully trained the robot to perform the full
throwing motion

Achieved ~1-meter throws, but with inconsistent
repeatability

Simulation - real differences and poor release timing

prevented further training

Our robot was able to learn the throwing motion

and achieved throws of around one meter, but the

results were not consistently reproducible. The

gap between simulation and the real robot limited

our ability to continue with more advanced

training, and precise release timing remained

difficult to master.

11

Conclusion and
Future Work

12

● Main limitation was the sim-to-real gap — inaccurate dart

aerodynamics, joint inconsistencies, and motor constraints

blocked stable policy transfer.

● Precise release timing remained the biggest challenge,

preventing the robot from progressing to accurate

target-based training.

● Future work includes improving simulation fidelity and

building a more reliable release-timing mechanism for

consistent throws.

● Incorporating 6D pose estimation and refined reward

shaping will enable accurate, real-world, target-driven

performance.

Thank you

13

