Applying
Reinforcement
Learning to Robotic

Dart Throwing

12/10/2025
Zaaim Rahman, Maunika Achanta,
Nivedh Koya, Wafee Choudhury

Overview

Introduction oy

Architecture oz

Simulation Setup & Training (o3

Robot Control (o4

Demo (o5

Results and Evaluations (s

Conclusion and Future Work (a7

Introduction

e Abstract: Our project centers around applying reinforcement learning (RL) to
a dart-throwing application to test a robot arm’s accuracy in throwing
projectiles.

e Reinforcement Learning needed for delayed-reward dart throwing,
where early arm motions give no immediate feedback

e PyBullet simulation with SO-101 arm using two-stage training: dense
rewards for throw mechanics, sparse rewards for target accuracy

e Integration of 6D pose estimation and a learned velocity/torque

controller for real-world deployment

Architecture

Reinforcement ® Traintherobot in the simulated Deploying Policy to
environment

Lea rni ng ® Store trained models for testing SO 101'Arm

Environment

® Mimic the real dynamics of the ® Transfer policy for testing on

robot Training Algorithm U
® Approximate dart behaviour to Train PO"CY

PyBullet

Components

A physics simulation library
using the Bullet 2.X Engine
with Python bindings.

Stablebaselines3 +
Gymnasium

Standardized implementations
of reinforcement learning
environments to apply to
custom environments

LeRobot API

A wrapper around the
FeeTech STS3215 Motor
specification table for motor
control

Simulation Environment

Utilized PyBullet and URDF Files

Key activities

Develop simulation environment to
allow the robot arm to learn to throw

Challenges

Limitations of aerodynamic
simulation of dart fins
Motor speed limitation
Joint inconsistencies

URDF Simulation

Files v Debugging
Develop controller to
control both simulated
arm and real arm

SO101-Arm URDF pulled
from GitHub repo

Create URDF file for board

Initial
State

Develop classes for RobotAgent
and Environments to reset to
initial state

Collision detection for rewards

Observations

Joint Positions
+
Joint Velocities

Training Setup

The trajectory after release does not change the reward at all

=

The state of releasing the dart is associated with the reward

Reward Functions

Actions

Joint Positions
+
Boolean Release

~

Initial Reward
01

Rewards were given
based on the position,
orientation, linear
velocity, and angular
velocity of the dart.

Shoulder Panning
oe

The model would
always tend to the left
side when throwing
which caused it to lose
the dart.

Velocity Loop-Hole
03

The model realized it
could oscillate along
the Z axis to
accumulate linear
velocity reward,
solved by adding a
discount factor over
time

Release Angle
04

The release angle was
optimized to 45
degreesin the
simulation but did not
translate well in real
life. Solved by adding
reward for desired
angle.

Time Delta Limit
05

The real robot’s
motors could not keep
up with the time delta
decided by the physics
simulation. Solved by
creating buffertime
between simulation
steps.

Robot Control

FeeTech
STS3215 Spec

FeeTech specification
for motor memory
table

Can be used to
manipulate motor
properties

Memory Table
APl in LeRobot

self.bus.sync_read()
self.bus.sync_write()

Internal functions used to
read/write using UART
adapter packets with
motors

Current Joint
Velocities

“Present_Velocities”
At Byte 58

This is the key to memory
table mapping for
receiving joint velocities

Joint Maximum
Velocity

“Goal_Velocity”
At Byte 46

This is the key to
memory mapping for
setting the goal
velocity of joints

» Write delay required

» Test for moving speed

S0101Followerll

Wrapper class to extend
SO101Follower Class

Allow to easily
transfer Policy

Demo

Bullet Physics ExampleBrowser using OpenGL3+ [btgl] Release build

3

OO E

oo e

https://docs.google.com/file/d/185ORnTumGqgp4u7BFJuWn9dmpStsk_zr/preview
https://docs.google.com/file/d/1WnHfy0DQnfQSkqsI8k1CT5NeBFsmh0HI/preview

Results

Our robot was able to learn the throwing motion
and achieved throws of around one meter, but the
results were not consistently reproducible. The
gap between simulation and the real robot limited
our ability to continue with more advanced
training, and precise release timing remained
difficult to master.

Successfully trained the robot to perform the full
throwing motion

Achieved ~1-meter throws, but with inconsistent
repeatability

Simulation - real differences and poor release timing
prevented further training

11

Main limitation was the sim-to-real gap — inaccurate dart
aerodynamics, joint inconsistencies, and motor constraints
blocked stable policy transfer.

Precise release timing remained the biggest challenge,
preventing the robot from progressing to accurate
target-based training.

Future work includes improving simulation fidelity and
building a more reliable release-timing mechanism for
consistent throws.

Incorporating 6D pose estimation and refined reward
shaping will enable accurate, real-world, target-driven

performance.

Thank you

