Slotbot: Pick and
Place Shapes

Kyle Poulson, Keven Diaz, Akeem Mohammed, and Alan Mascorro

p CS 6341 Robotics - Team 4

Project Overview

Perception:
e The system scans a camera feed to lock onto the active workspace using corner ArUco markers.
e It then identifies shapes and their orientations via specific ID tags and locates their wooden grasp
handles using color thresholding

Decision (Path Planning):
e The software converts 2D pixel data into 3D robot-relative millimeter coordinates using real-time
scaling
e It logically pairs each detected “Pickup” shape with its corresponding “Drop” slot based on ArUco ID
matching or geometric elimination

Action:
e The system feeds the target coordinates (X, Y, Z) into an inverse Kinematics solver to calculate
required joint angles and execute the move.

p CS 6341 Robotics - Team 4

Vision Pipeline Overview

Goal
o Detects ArUco markers to define a workspace and also what shape belongs in what tray slot

e Identifies and classifies geometric shapes inside that region
e Provides accurate coordinates for robotic pick-and-place operations

Method
e Boundary setup: Four corner ArUco markers (IDs 0-3) form the workspace

e Shape detection: Adaptive thresholding + contour approximation for triangles, squares, polygons

e Coordinate mapping: Pixel-to-millimeter calibration using reference markers

e Optimization: Caching and temporal smoothing for 25-30 FPS real-time performance
Validation/Results

° .4 Corner markers (ID 0-3) detected consistently

° .4 Shapes (Triangle, Square, Pentagon, etc.) correctly classified
e |/ Inner ArUco markers (e.g., ID 987, 190) accurately identified
e |/ Real-time performance confirmed during live testing

e |/ Workspace boundary precisely defined and stable

p CS 6341 Robotics - Team 4

Vision Algorithms

e Harris Corner Detection - Locates marker corners by analyzing local intensity gradients.
Adaptive Thresholding - Dynamically separates foreground (shapes/markers) from background under variable
lighting.
Contour Detection (cv2.findContours) - Extracts shape outlines from binary masks.

e Aspect Ratio & Vertex Count Classification - Classifies shapes (tfriangle, square, pentagon, etc.) based on
geometry
Ray Casting Algorithm - Determines if detected shapes are inside the defined workspace region.
Pixel-to-Millimeter Conversion - Converts image-space coordinates to physical robot coordinates using
calibration.

e Temporal Smoothing & Statistical Filtering - Stabilizes detections across frames and removes outliers.

Frame: 5911 | Imer Morkers: 3 | Shopes: O | Sofeten oo
{#

DES0- 2 AT:oNE00BO 0" ORE QoRk ¥
B BF=B808E06 rEEsoNE00®

oo © s - 0o

@ rourocurenty sgnedins
Akeemoshione99@gmail.com

& (sinirn |-) 00 - Q@

@ Yourecurentysgnedinss
Akeemoshione99@gmailcom

RO - BE=B0 6

BF=R0FGOE80-" 2T oNE00BOO0O®

p CS 6341 Robotics - Team 4

Environment Calibration

Why ArUco markers?
e We didn't want to hardcode specific pixel coordinates because if the camera
or table got bumped even slightly, the robot would miss every grasp. Instead,
we used four corner anchors (IDs 0-3) to define a dynamic workspace.

How the calibration works.

e Defining the Boundary: We implemented a masking algorithm that draws a
quadrilateral connecting the four corner markers. Our vision systems creates
a binary mask from this shape, effectively ignoring all background noise (like
cables or hands) outside the play area.

e Pixel-to-Real-World Scaling: We automated the unit conversion by
calculating a real-time mm_per_pixel factor. The system measures pixel
distance between our anchor markers and compares it to the known physical
distance, allowing us to translate camera pixels into precise millimeter targets
for the arm

p CS 6341 Robotics - Team 4

Robot Control and Kinematics

Simplifying the Motion: Although we are using a 6-motor arm, we treated
the movement logic like a SCARA robot. We calculate the Planar Reach (X, Y)
separately from the Orientation

The Math:
e To reach a specific point, we calculate the Shoulder Pan using simple
tfrigonometry.
e We then use the Law of Cosines to determine the shoulder lift,
extending the arm to the correct distance based on the lengths of our
upper arm and forearm.

Orientation Logic: For the shapes that need rotation (square and triangle),
we calculate the angular difference between the pickup Aruco marker and
the slot ArUco marker, sending that value directly to the wrist roll servo.

p CS 6341 Robotics - Team 4

Limitations

Vision:

Lighting sensitivity: HSV color
thresholding to detect the orange, blue,
and green knobs.

Mechanical:

The robot operates blindly once it starts
moving. It calculates a path and
executes it without feedback. If the piece
slips out of the gripper, or if the robot
bumps into something, the system has no
way of knowing and will continue its
motion as if nothing happened.

Future

Fine tune the inverse kinematics to move
more smoothly to avoid accidental
throwing or moving other elements on the
board.

Move to machine learning (YOLO). The
current system is heavily reliant on color
and lighting. Training a small object
detection model would allow the robot to
identify the colored knobs regardless of
lighting conditions.

p CS 6341 Robotics - Team 4

DEMO

