
Kyle Poulson, Keven Diaz, Akeem Mohammed, and Alan Mascorro

Slotbot: Pick and 
Place Shapes

CS 6341 Robotics - Team 4



Project Overview

CS 6341 Robotics - Team 4

Perception:
● The system scans a camera feed to lock onto the active workspace using corner ArUco markers.
● It then identifies shapes and their orientations via specific ID tags and locates their wooden grasp 

handles using color thresholding

Decision (Path Planning):
● The software converts 2D pixel data into 3D robot-relative millimeter coordinates using real-time 

scaling
● It logically pairs each detected “Pickup” shape with its corresponding “Drop” slot based on ArUco ID 

matching or geometric elimination

Action: 
● The system feeds the target coordinates (X, Y, Z) into an inverse Kinematics solver to calculate 

required joint angles and execute the move.



Vision Pipeline Overview
CS 6341 Robotics - Team 4

Goal
● Detects ArUco markers to define a workspace and also what shape belongs in what tray slot
● Identifies and classifies geometric shapes inside that region
● Provides accurate coordinates for robotic pick-and-place operations

Method
● Boundary setup: Four corner ArUco markers (IDs 0–3) form the workspace
● Shape detection: Adaptive thresholding + contour approximation for triangles, squares, polygons
● Coordinate mapping: Pixel-to-millimeter calibration using reference markers
● Optimization: Caching and temporal smoothing for 25–30 FPS real-time performance

Validation/Results
● ✅ Corner markers (ID 0–3) detected consistently
● ✅ Shapes (Triangle, Square, Pentagon, etc.) correctly classified
● ✅ Inner ArUco markers (e.g., ID 987, 190) accurately identified
● ✅ Real-time performance confirmed during live testing
● ✅ Workspace boundary precisely defined and stable



Vision Algorithms

CS 6341 Robotics - Team 4

● Harris Corner Detection – Locates marker corners by analyzing local intensity gradients.
● Adaptive Thresholding – Dynamically separates foreground (shapes/markers) from background under variable 

lighting.
● Contour Detection (cv2.findContours) – Extracts shape outlines from binary masks.
● Aspect Ratio & Vertex Count Classification – Classifies shapes (triangle, square, pentagon, etc.) based on 

geometry
● Ray Casting Algorithm – Determines if detected shapes are inside the defined workspace region.
● Pixel-to-Millimeter Conversion – Converts image-space coordinates to physical robot coordinates using 

calibration.
● Temporal Smoothing & Statistical Filtering – Stabilizes detections across frames and removes outliers.





Environment Calibration

CS 6341 Robotics - Team 4

Why ArUco markers?
● We didn’t want to hardcode specific pixel coordinates because if the camera 

or table got bumped even slightly, the robot would miss every grasp. Instead, 
we used four corner anchors (IDs 0-3) to define a dynamic workspace.

How the calibration works.
● Defining the Boundary: We implemented a masking algorithm that draws a 

quadrilateral connecting the four corner markers. Our vision systems creates 
a binary mask from this shape, effectively ignoring all background noise (like 
cables or hands) outside the play area.

● Pixel-to-Real-World Scaling: We automated the unit conversion by 
calculating a real-time mm_per_pixel factor. The system measures pixel 
distance between our anchor markers and compares it to the known physical 
distance, allowing us to translate camera pixels into precise millimeter targets 
for the arm



Robot Control and Kinematics 
CS 6341 Robotics - Team 4

Simplifying the Motion: Although we are using a 6-motor arm, we treated 
the movement logic like a SCARA robot. We calculate the Planar Reach (X, Y) 
separately from the Orientation

The Math:
● To reach a specific point, we calculate the Shoulder Pan using simple 

trigonometry.
● We then use the Law of Cosines to determine the shoulder lift, 

extending the arm to the correct distance based on the lengths of our 
upper arm and forearm.

Orientation Logic: For the shapes that need rotation (square and triangle), 
we calculate the angular difference between the pickup ArUco marker and 
the slot ArUco marker, sending that value directly to the wrist roll servo.



Limitations

CS 6341 Robotics - Team 4

Vision:
● Lighting sensitivity: HSV color 

thresholding to detect the orange, blue, 
and green knobs.

Mechanical:
● The robot operates blindly once it starts 

moving. It calculates a path and 
executes it without feedback. If the piece 
slips out of the gripper, or if the robot 
bumps into something, the system has no 
way of knowing and will continue its 
motion as if nothing happened.

● Fine tune the inverse kinematics to move 
more smoothly to avoid accidental 
throwing or moving other elements on the 
board.

● Move to machine learning (YOLO). The 
current system is heavily reliant on color 
and lighting. Training a small object 
detection model would allow the robot to 
identify the colored knobs regardless of 
lighting conditions.

Future



DEMO
 

CS 6341 Robotics - Team 4


