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Motivation for
Robot Cleanup

* Household and office cleanup
behaviors (e.g., object sorting, placing
items) are crucial for future general-
purpose robots.

* Many everyday tasks involve:

* High within-class variation

* Partial occlusions

* Millimeter-level placement precision

* Goal: Achieve sample-efficient learning
using a compact VLA model (SmolVLA)
fine-tuned on a small real-world
dataset.




Group Task

Our task:

Teach a robot to pick and place colored
blocks (red/green/yellow) into a bin using
imitation learning.

High-level theme:

This task is a micro-version of real
household cleanup behaviors — sorting
objects, organizing clutter, and placing
items where they belong.




System Overview:

e Hardware: SO-101 6-DOF research arm

* Cameras: wrist-mounted first-person
camera

* Policy: SmolVLA (vision—language—
action)

* Training: Behavioral Cloning on small
curated dataset

* Deployment: Real-time control via
continuous action output




Model Training

Training Overview:

Goal: Fine-tune SmolVLA to perform a
single robot manipulation task

Approach: Offline imitation learning on
expert demonstrations

Model: SmolVLA (Vision-Language-Action
transformer)

Training type: Fine-tuning using supervised
learning on trajectories

Framework: LeRobot + Hugging Face



Dataset Summary:

Link: https://huggingface.co/datasets/HenryZ
hang/Groupll data 1763075740.884942

* 90 episodes
Model Training 45,000+ frarmes

* 1 camera view (Top-down) — 640x480
* Robot: s0101_follower

* Actions: 6-dim joint positions

* Obs: images + 6 joint states

* Language instruction



https://huggingface.co/datasets/HenryZhang/Group11_data_1763075740.884942
https://huggingface.co/datasets/HenryZhang/Group11_data_1763075740.884942

Training Data Inputs and Outputs:

Inputs:
* Front camera RGB (640x480)
* Robot state (6 joints)
* Task instruction: Language instruction
— "Grasp a lego block and put it in the

Model Training bin."

Outputs (labels):
* 6-D robot action:
[shoulder _pan, shoulder_lift, elbow_flex,
wrist_flex, wrist_roll, gripper]




Training Method:

Objective: Predict the expert action given
image + robot state + language instruction

Loss: Mean Squared Error (MSE) between
predicted and expert actions

Model Training

Batching: Sequence chunks (=1000 frames
per chunk)

Hardware: (A100 on colab)

Duration: 70 minutes




Config & Run:

Ipython src/lerobot/scripts/lerobot_train.py \
--policy.type=smolvla \
--policy.pretrained_path={CONFIG['policy_path']} \
--policy.repo_id=smolvla_finetuned \

Model Trainin g --dataset.repo_id={CONFIG['dataset_repo_id']} \
--batch_size=4\

--steps=20000 \

--optimizer.lr=5e-5 \

--save freq=5000 \

--eval freq=5000




Worktlow:

Closed-Loop Evaluation on SO-101

ine-Tuning: Trai ' e Success rate
Real-World Data Collection SmolVLA Fine-Tuning: Train action head

on cube demonstration dataset * Motion smoothness
* Placement accuracy




Evaluation

LA v OOT . Carver s 1ndex_or_path: ~ S Sevivideco2" .
- - an=" front: {type: opencwv. n t 5
alfeval r'-_m\_c-!( . ~detaset single Tasks- Plck wup the red cube ’..

_ * We trained the model on videos that were preprocessed to
* Even when other objects are present the model _
, , , ensure the cube would be in frame.
picks up the red cube based on our instruction. , .
* Forobjects the model has not seen, the S0-101 will ignore.



Challenges

The evaluation setup currently depends heavily on the
first-person camera attached to the gripper.

Without a stable overhead view:
* The cube may leave the field of view
* Visual drift and occlusions degrade model
predictions

This creates instability in:
e Grasp detection
* Placement alignment

Additional challenges:
 Partial occlusions and lighting variation
 Action jitter from VLA outputs
 Limited real-world demonstrations (<100)
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Thank you!
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