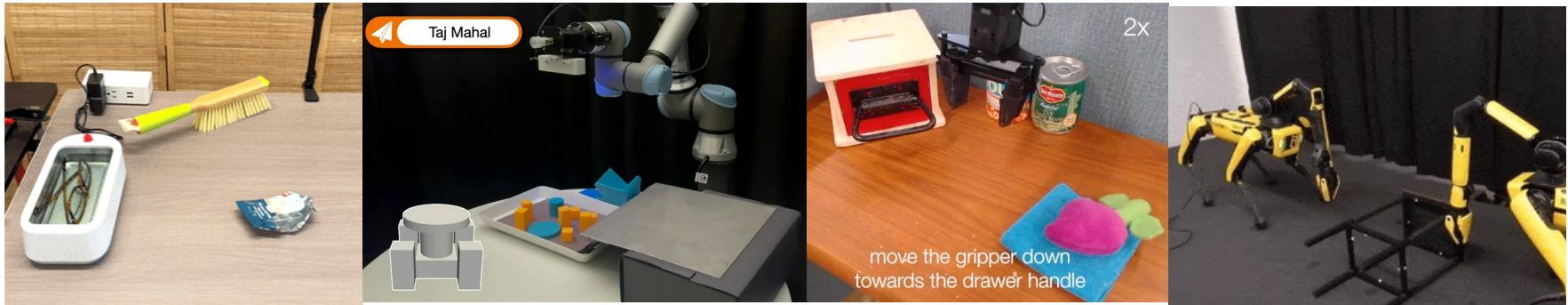


# Physically Grounded Reasoning for Open-World Robot Dexterity



Kuan Fang  
Department of Computer Science  
Cornell University



**Cornell Bowers CIS**  
College of Computing  
and Information Science

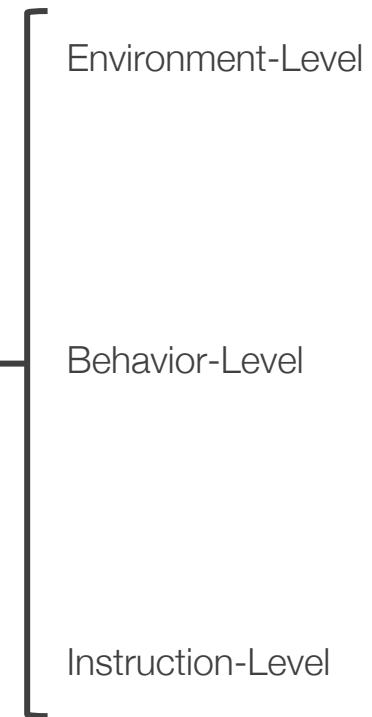
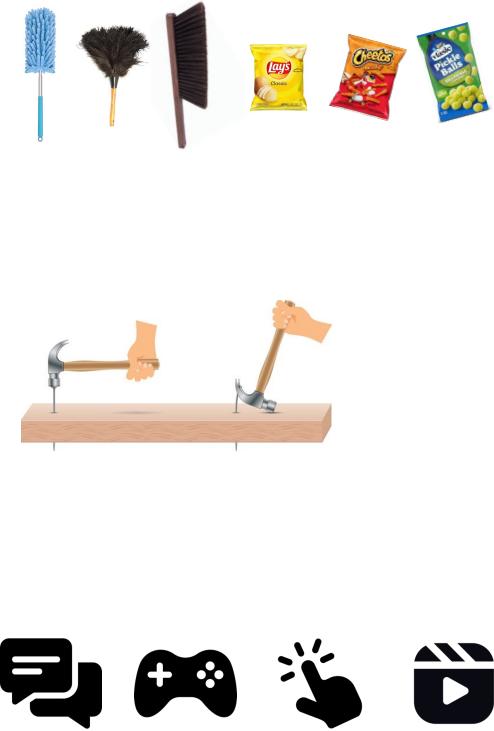
1x



# Toward Open-World Robot Dexterity

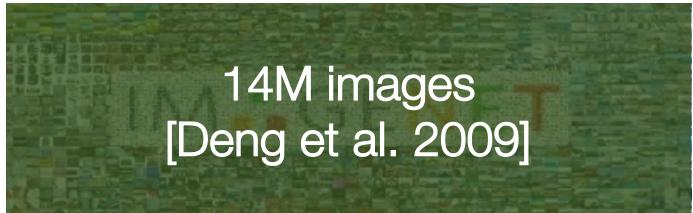
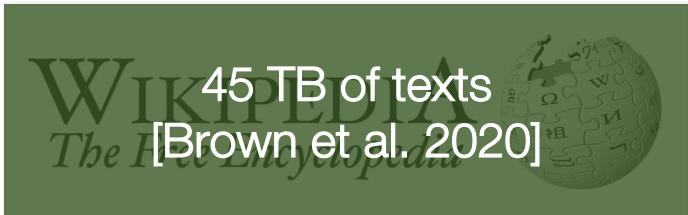


Open-World  
Generalization

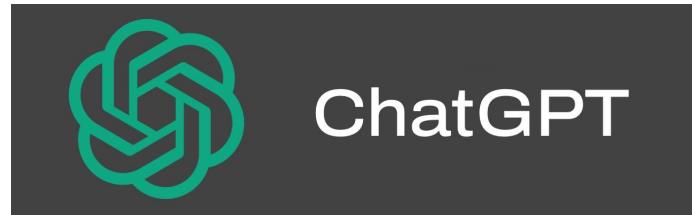


# Path to foundation models: Scaling up

massive datasets



generalizable AI models



# Scaling up end-to-end robot learning as the solution ?

massive robot data



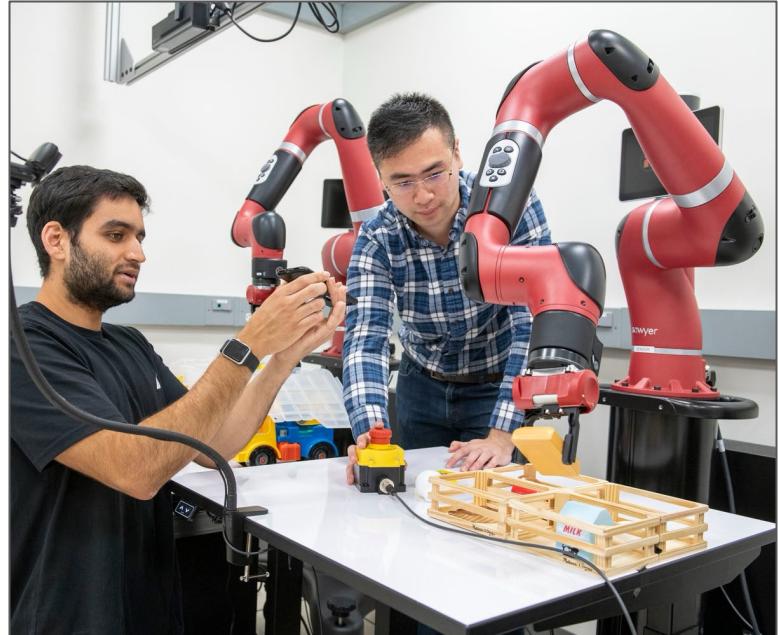
open-world robot dexterity



# Challenges in scaling up robot learning



various variety of robot tasks



learning requires physical interactions

## Semantic Reasoning



Mark-Based Visual Prompting

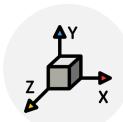


Physically Grounded  
Task Representation

Versatile Interfacing for  
Whole-Body Control



Policy Adaptation via  
Language Optimization



Robot Control

## Semantic Reasoning



Mark-Based Visual Prompting

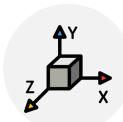


Physically Grounded  
Task Representation

Versatile Interfacing for  
Whole-Body Control



Policy Adaptation via  
Language Optimization



Robot Control

## Semantic Reasoning



Mark-Based Visual Prompting

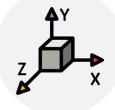


Physically Grounded  
Task Representation

Versatile Interfacing for  
Whole-Body Control



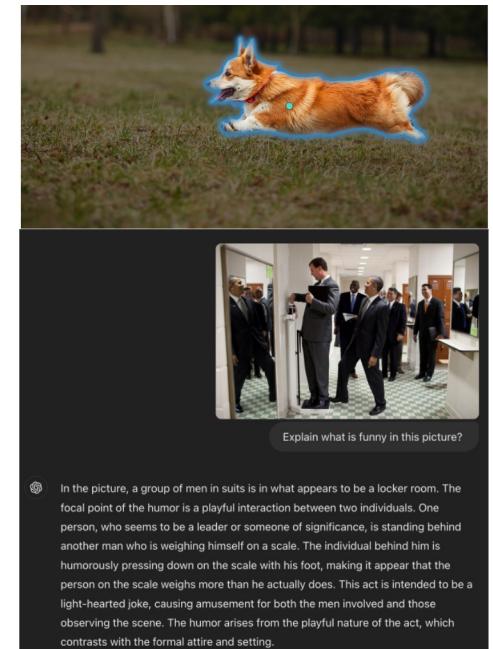
Policy Adaptation via  
Language Optimization



Robot Control

# How can we leverage a pre-trained VLM for robotic control?

💡 Key insight: Convert motion planning into a series of **QA problems** that VLMs can solve.



# MOKA: Marking Open-world Keypoint Affordances

Use a set of **keypoints** to specify the motion trajectory for solving the task.



● grasp   ● function   ● target   ● waypoints

- ✓ Separate semantics and motions
- ✓ Predictable on 2D images.
- ✓ Can specify diverse motions.
- ✓ Agnostic to the embodiment.

# MOKA: Marking Open-world Keypoint Affordances

**Challenge:** Directly predicting keypoint coordinates requires fine-grained spatial reasoning.



Wipe the snack wrapper off the table using the brush.

● grasp   ● function   ● target   ● waypoints



# MOKA: Marking Open-world Keypoint Affordances

To facilitate reasoning for the VLM, MOKA annotates **a set of marks** on the input image.



● grasp   ● function   ● target   ● waypoints



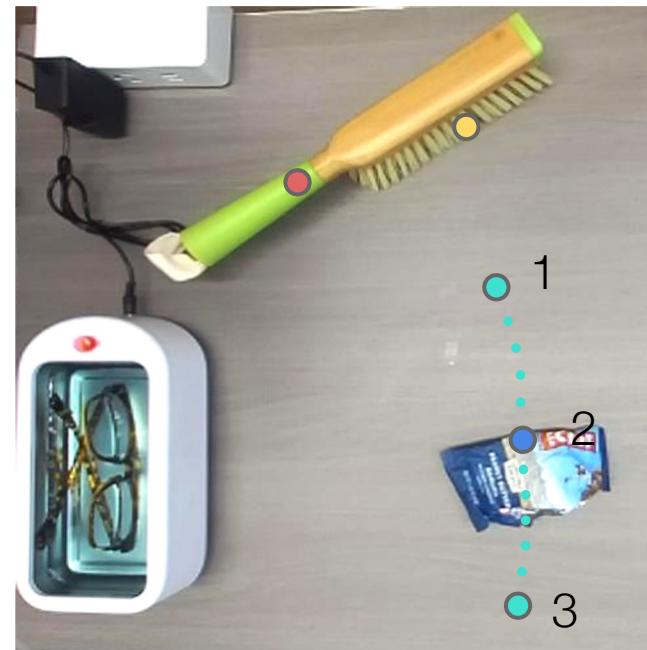
● □ [T] marks

# MOKA: Marking Open-world Keypoint Affordances

Without any training on any robot data, the VLM can solve the commanded manipulation task.



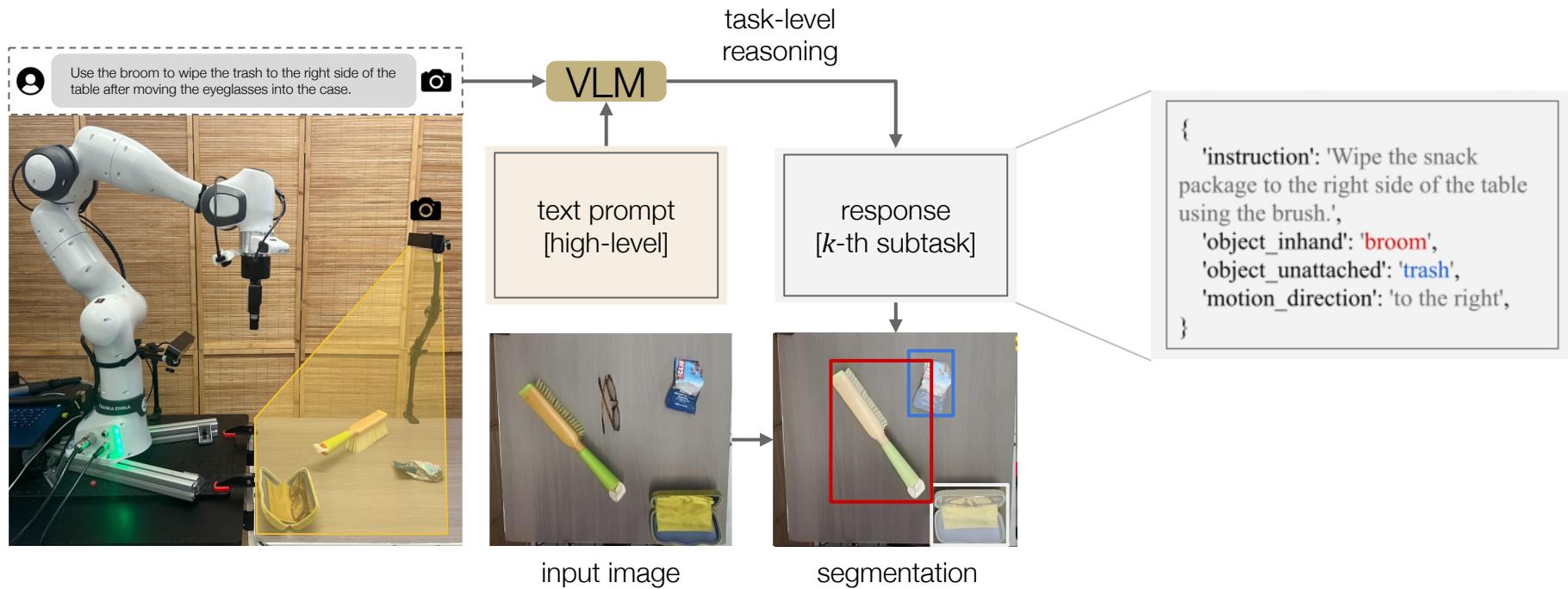
 Wipe the snack wrapper off the table using the brush.



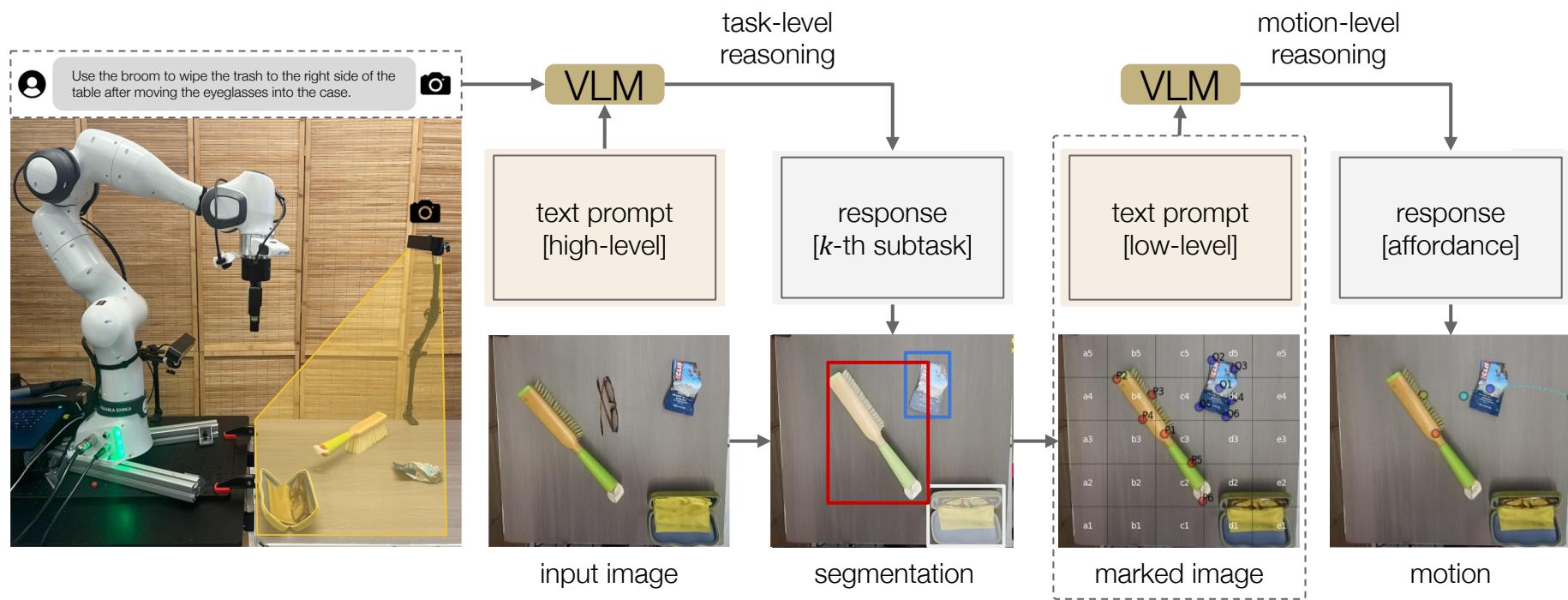
 grasp    function    target    waypoints

   marks

# MOKA: Marking Open-world Keypoint Affordances



# MOKA: Marking Open-world Keypoint Affordances



# MOKA: Marking Open-world Keypoint Affordances

Without any training on any robot data, the VLM can solve the commanded manipulation task. The prediction is robust to different instructions, poses, and objects.



different instructions, different poses

Use the broom to sweep the trash to the right side of the table.

Sweeping the trash from left to right with the broom.

Get the trash to the right side. There is a broom you can use.

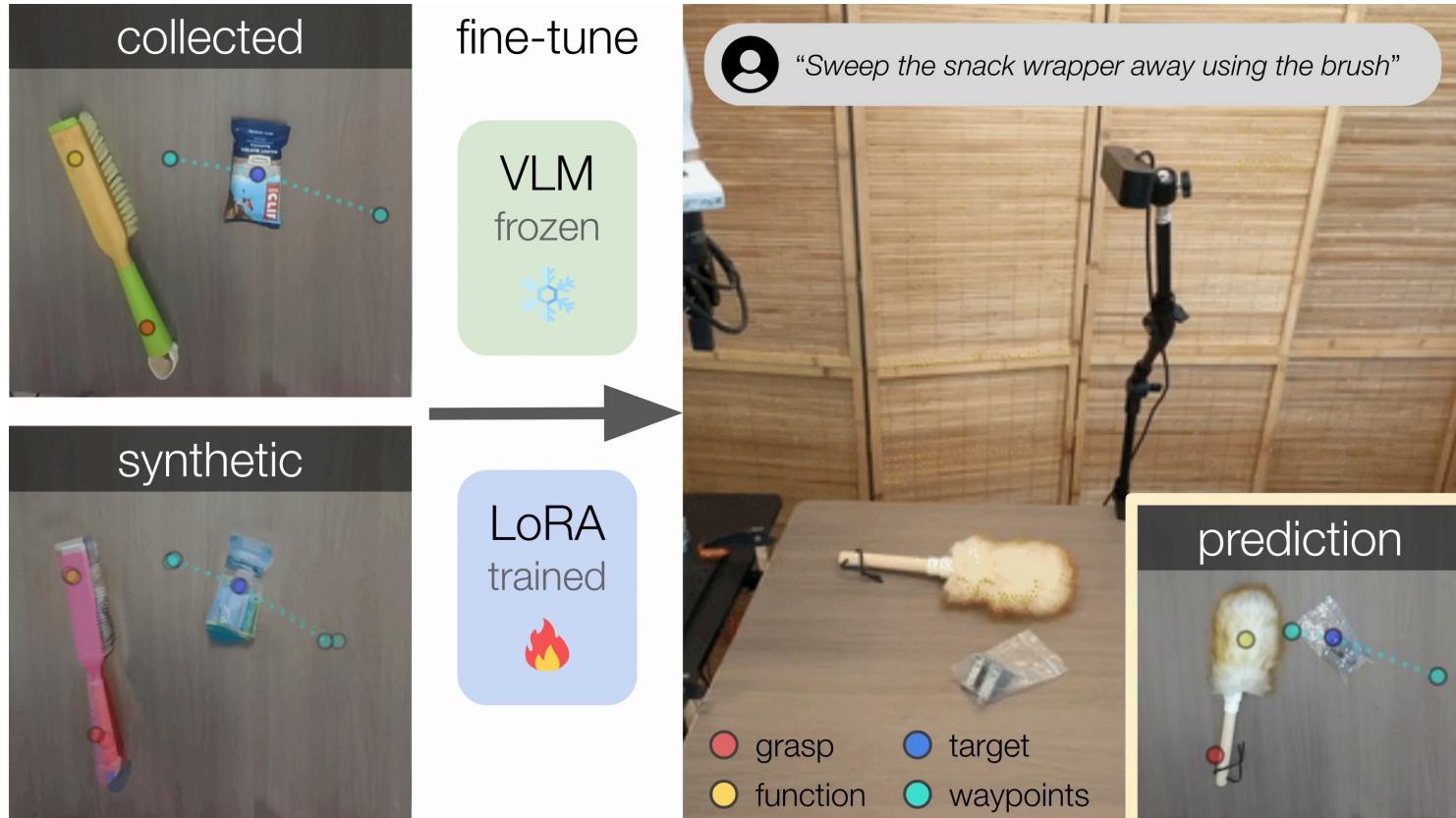
grasp keypoint   function keypoint   target keypoint   waypoints

# How to effectively fine-tune the VLM to improve generalization?



GPT-4 pre-training used  
around 13 trillion tokens

# KALIE: Keypoint Affordance Learning from Imagined Environments



# Challenge: How to generate physically consistent images?

Directly generating images from scratch or inpainting the images often lead to poor quality.



input



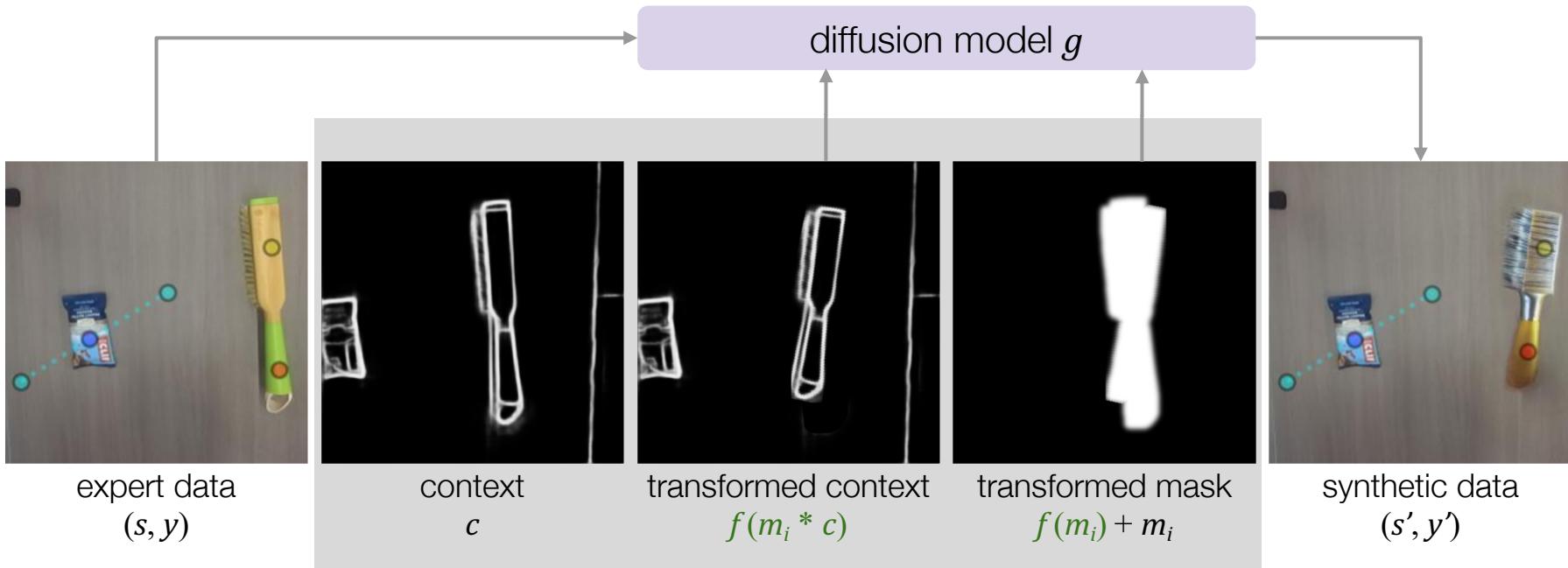
w/o original



w/o context

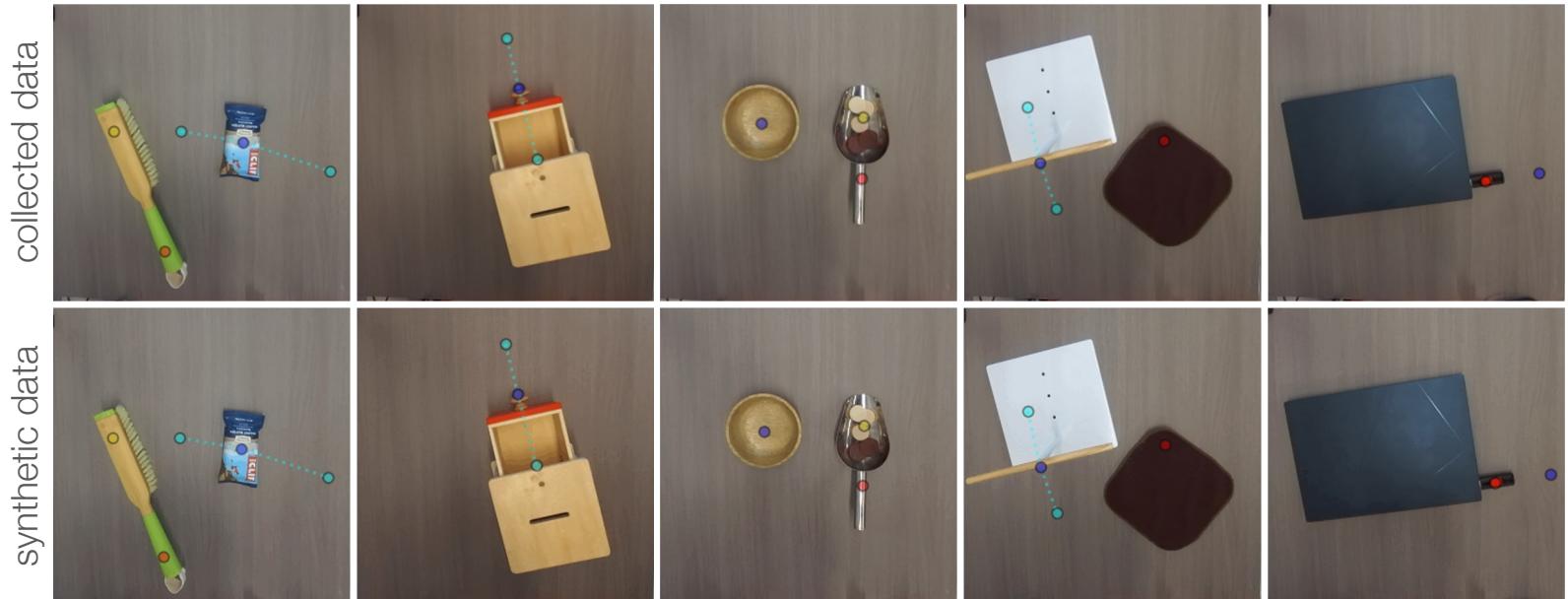
# Affordance-Aware Object Diversification

KALIE uses a **context image** as additional inputs to the diffusion model, which specifies the geometric properties of the object to be inpainted.



# Generated Data

- Employ conditional diffusion models to **diversify** the training data.
- **Fine-tune** the VLM to predict affordances through low-rank adaptation.



## Performance

KALIE robustly solves these tasks and consistently achieves superior performances compared to baselines.

| Methods       | Table Sweeping | Drawer Closing | Towel Hanging | Trowel Pouring | USB Unplugging |
|---------------|----------------|----------------|---------------|----------------|----------------|
| VoxPoser [13] | 3/15           | 8/15           | 1/15          | 0/15           | 0/15           |
| MOKA [10]     | 9/15           | 9/15           | 5/15          | 7/15           | 2/15           |
| KALIE (Ours)  | <b>14/15</b>   | <b>15/15</b>   | <b>13/15</b>  | <b>13/15</b>   | <b>9/15</b>    |

## Semantic Reasoning



Mark-Based Visual Prompting

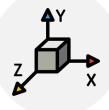


Physically Grounded  
Task Representation

Versatile Interfacing for  
Whole-Body Control

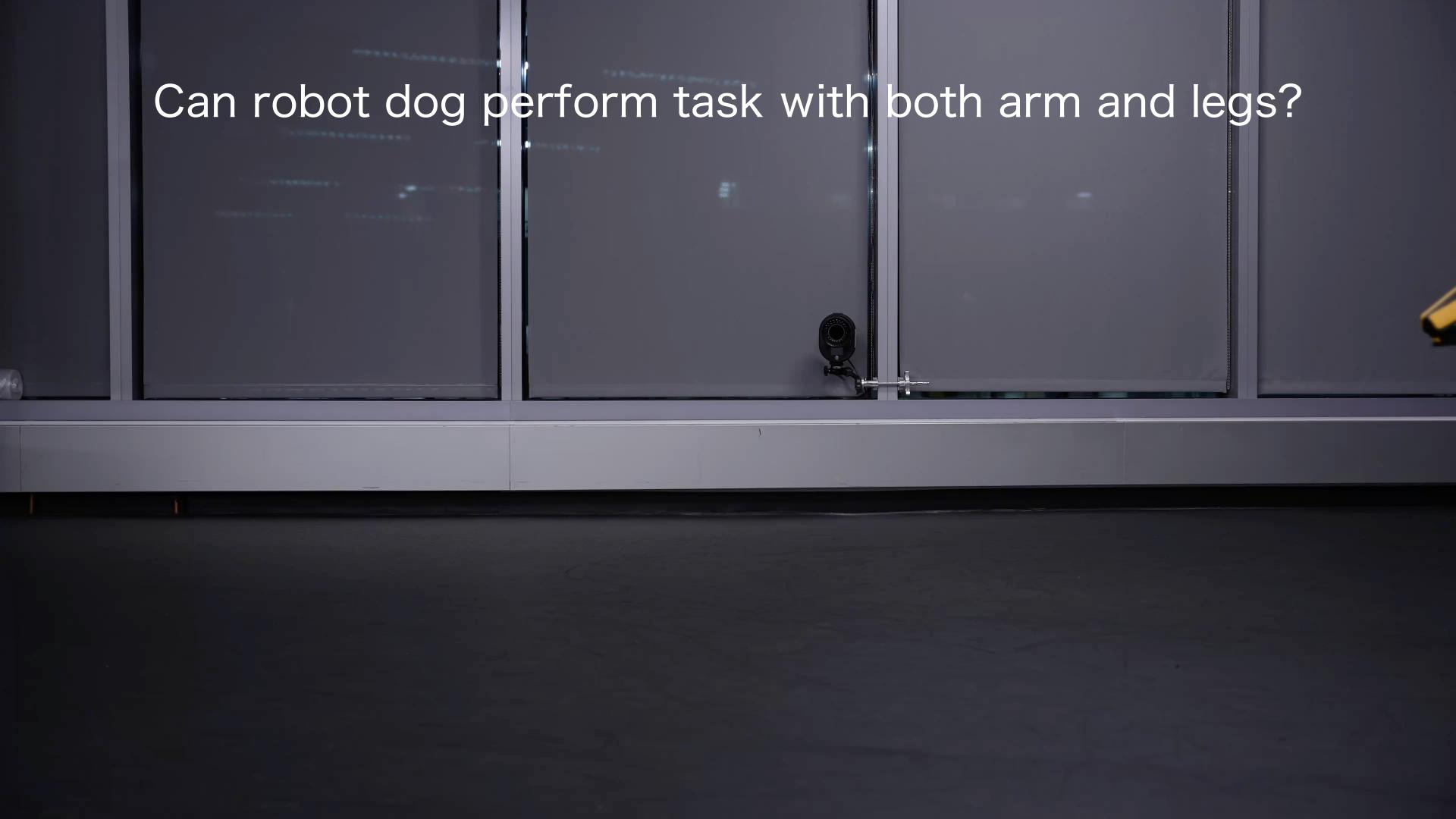


Policy Adaptation via  
Language Optimization



Robot Control

Can robot dog perform task with both arm and legs?





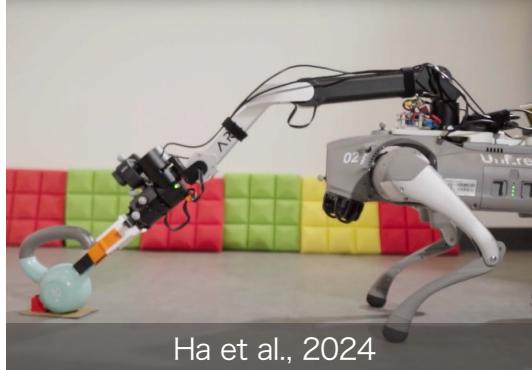
Can robot interact with objects  
using not only arms…  
but also legs?

# Quadruped Loco-Manipulation with Arms and Legs

Manipulate with only the arm



Liu et al., 2024

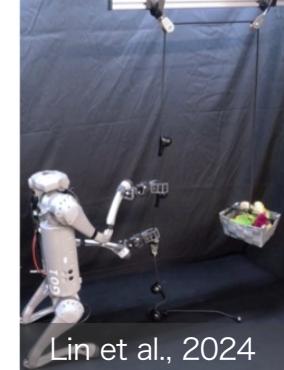


Ha et al., 2024

Repurpose legs for manipulation



Cheng et al., 2023



Lin et al., 2024

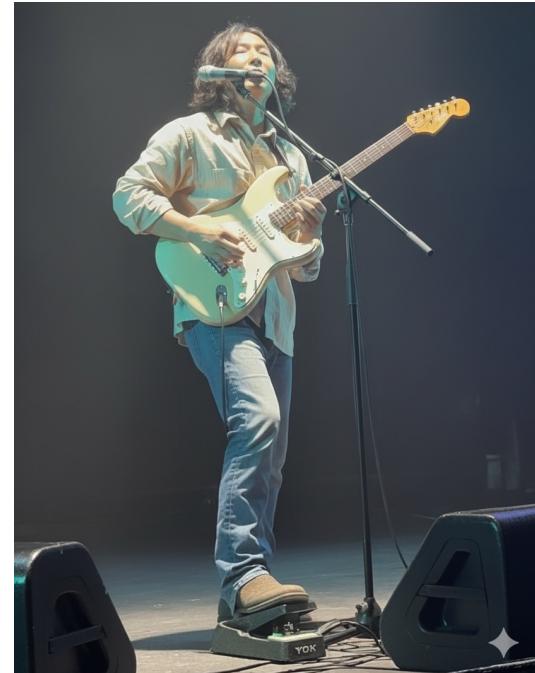
Fixed limb roles

Static limb coordination

Task-specific designs

# Human Interlimb Coordination

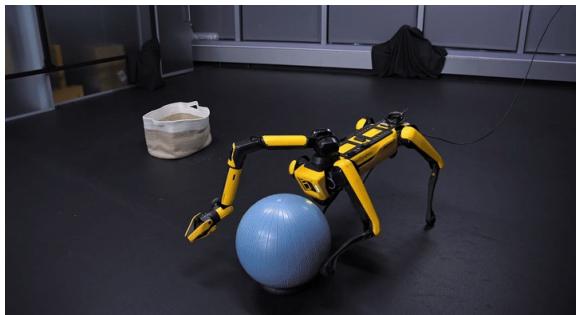
Humans can perform complex tasks by *jointly using multiple limbs.*



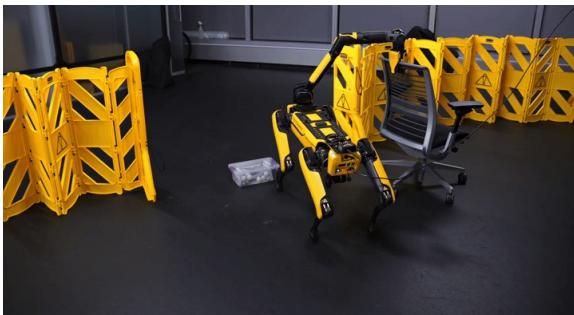
Images created with GenAI

# Loco-Manipulation via Interlimb Coordination

By coordinating the arm and legs, we aim to enable the robot to:



Manipulate with arm and leg while walking

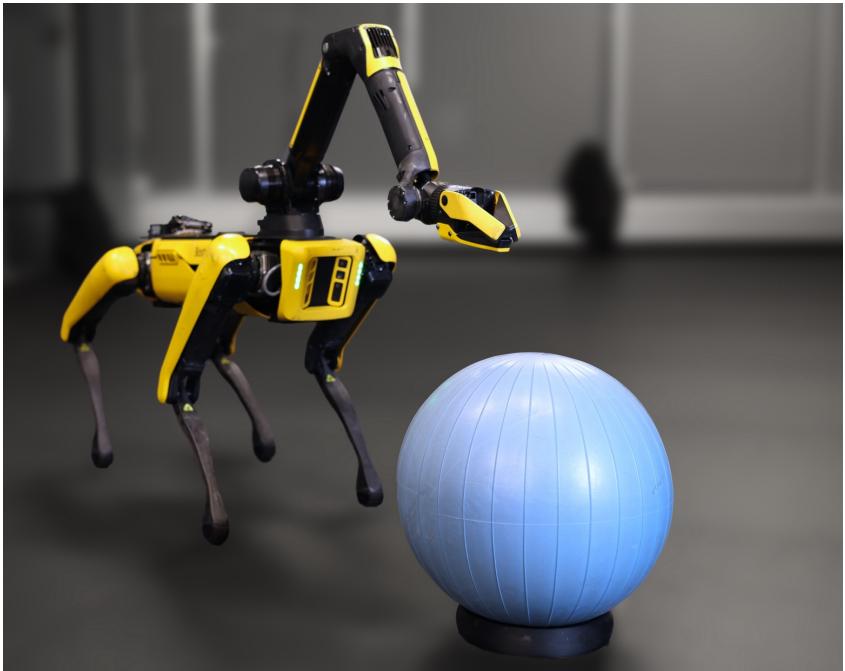


Manipulate with arm and leg while standing



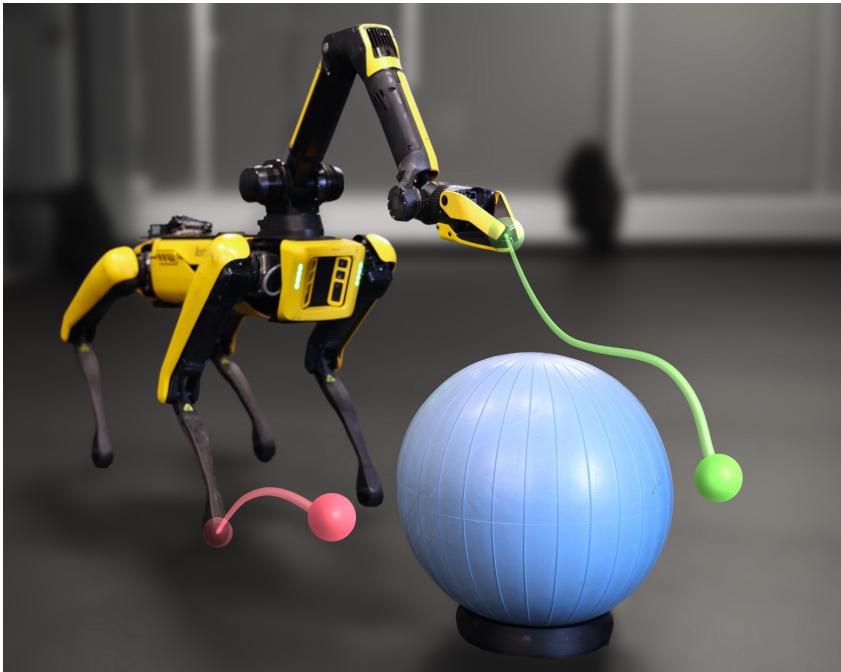
Assist or accelerate multi-step tasks with legs

# Loco-Manipulation via Interlimb Coordination



Task: Transporting the yoga ball  
to the other side of the room

# Loco-Manipulation via Interlimb Coordination



Given assigned roles of limbs and  
their target trajectories

# Loco-Manipulation via Interlimb Coordination



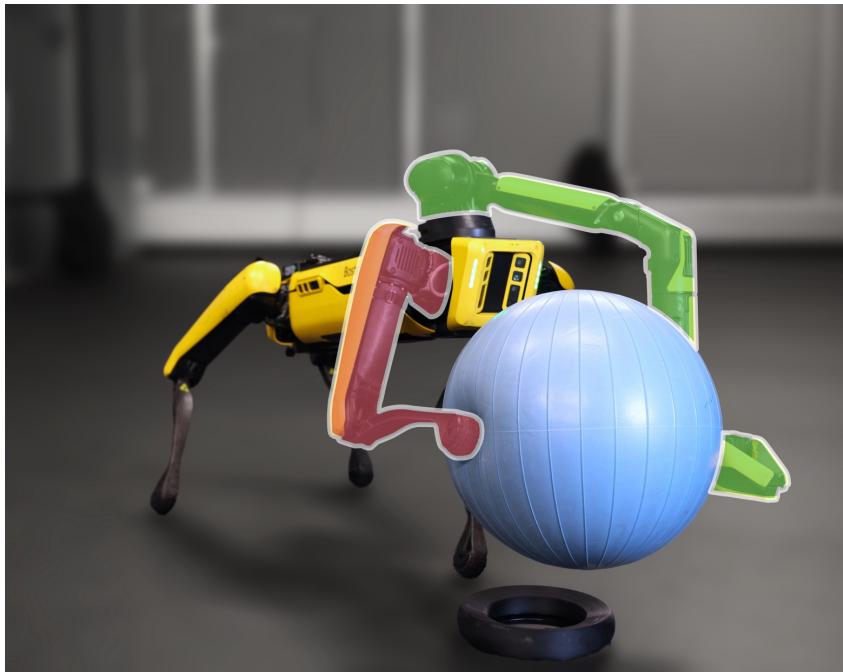
Given assigned roles of limbs and their target trajectories,  
jointly control the arm and legs to solve the task

# Loco-Manipulation via Interlimb Coordination



Key Challenge

# Loco-Manipulation via Interlimb Coordination



## Key Challenge

Precisely perform manipulation with the **arm** and a **selected leg**

# Loco-Manipulation via Interlimb Coordination



## Key Challenge

Precisely perform manipulation with the **arm** and a **selected leg**, while maintaining stable locomotion with the **remaining limbs**

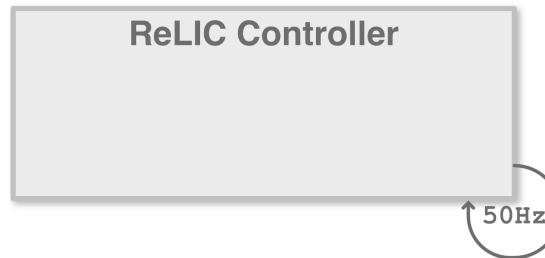
# Loco-Manipulation via Interlimb Coordination



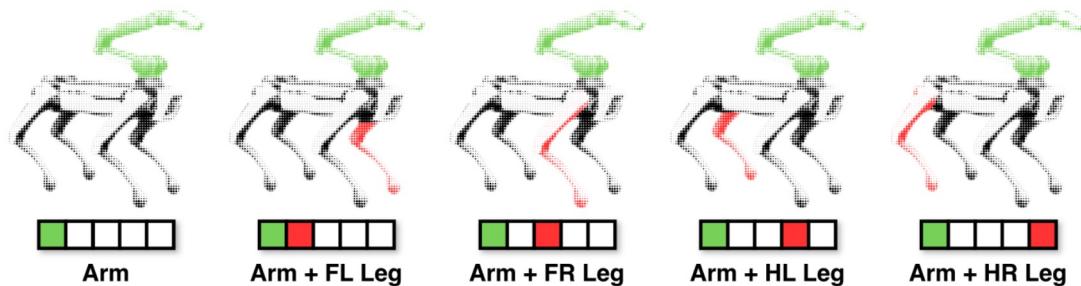
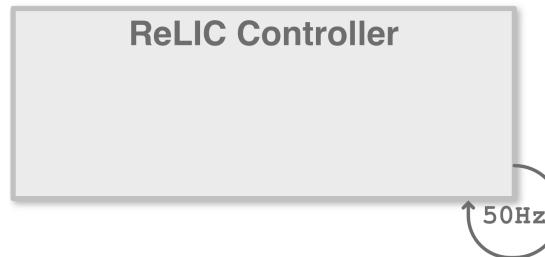
## Our Aims

- ✓ Flexible coordination strategies
- ✓ Dynamic limb assignments
- ✓ Versatile task specifications

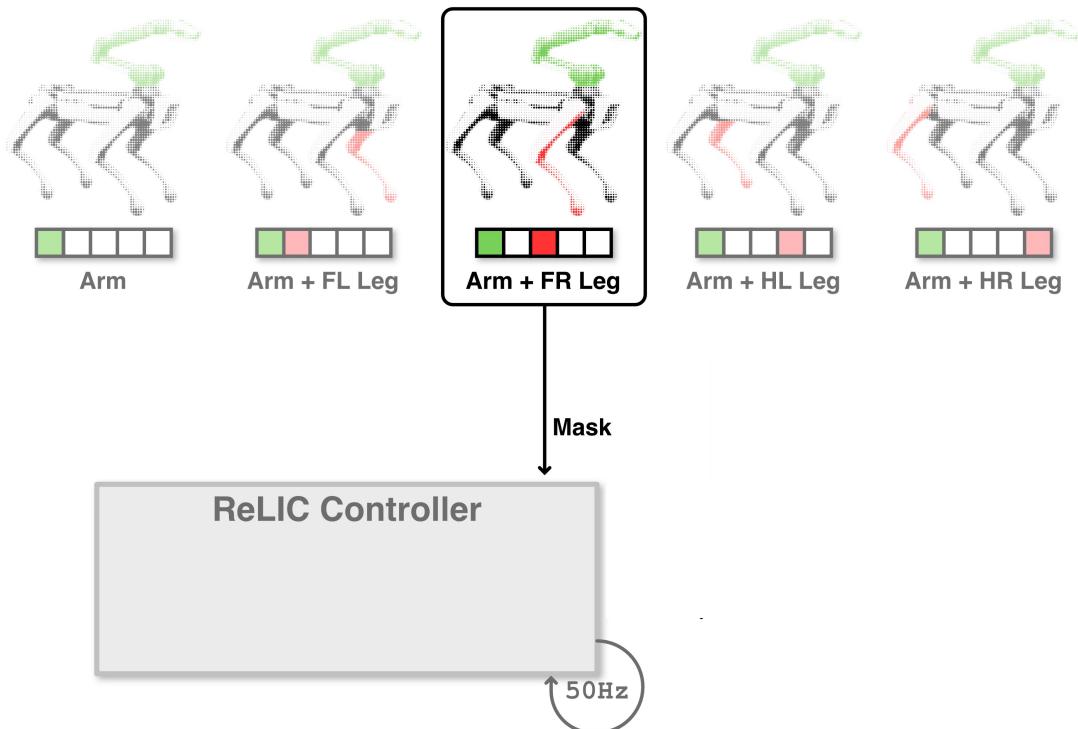
# Reinforcement Learning for Interlimb Coordination (ReLIC)



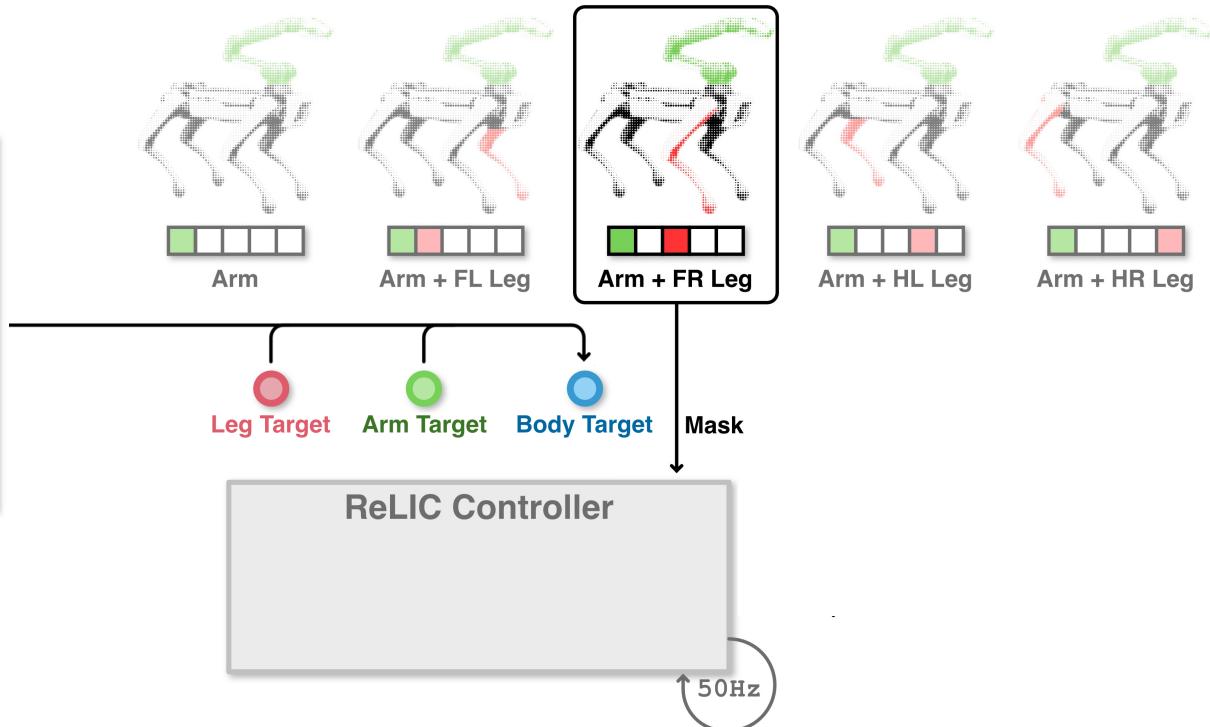
# Reinforcement Learning for Interlimb Coordination (ReLIC)



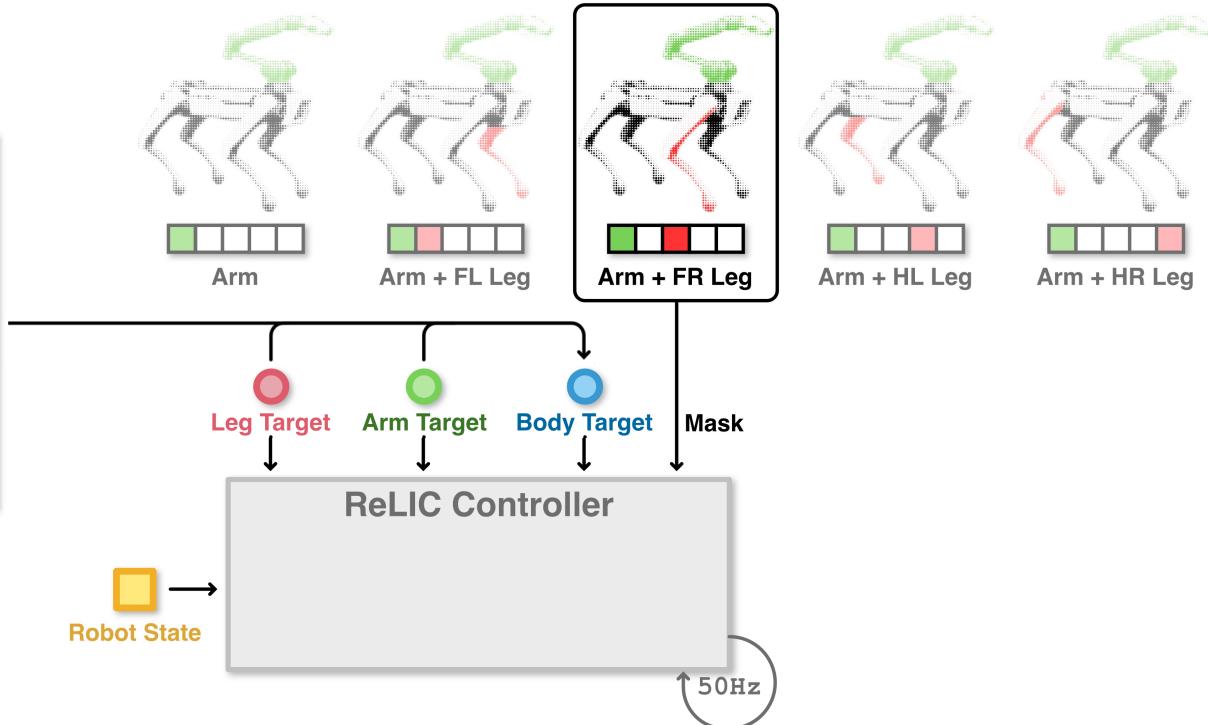
# Reinforcement Learning for Interlimb Coordination (ReLIC)



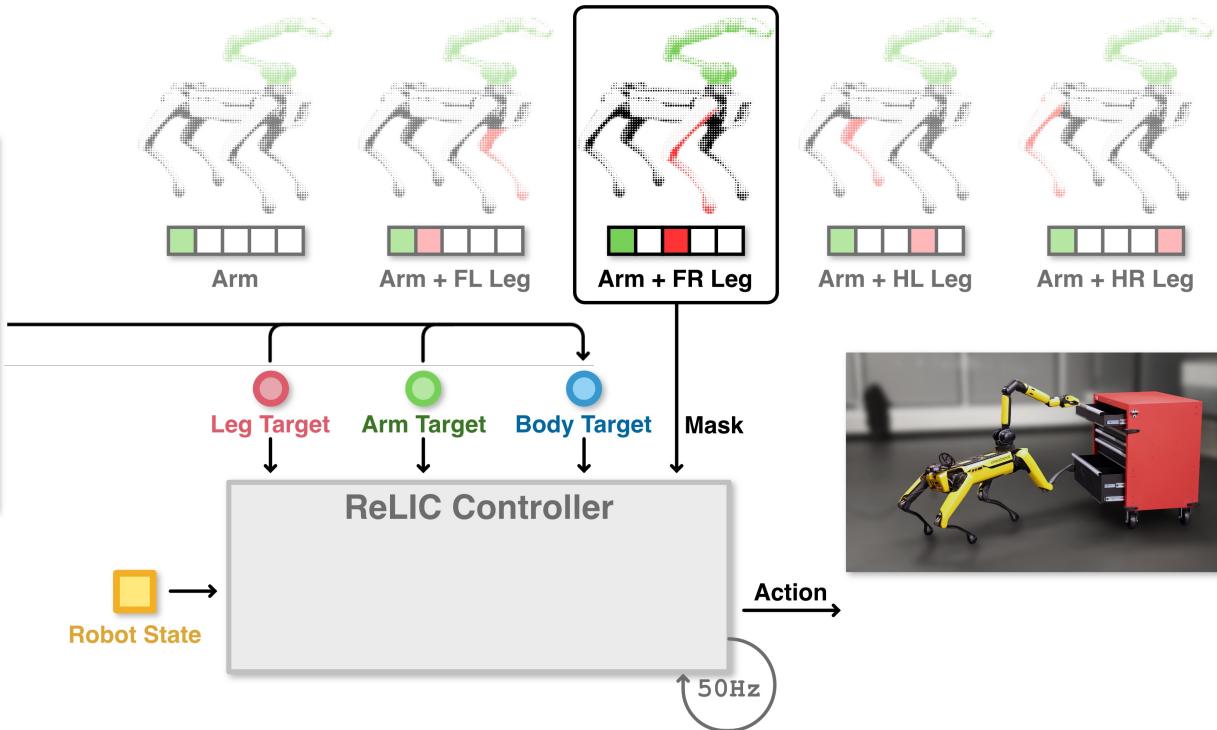
# Reinforcement Learning for Interlimb Coordination (ReLIC)



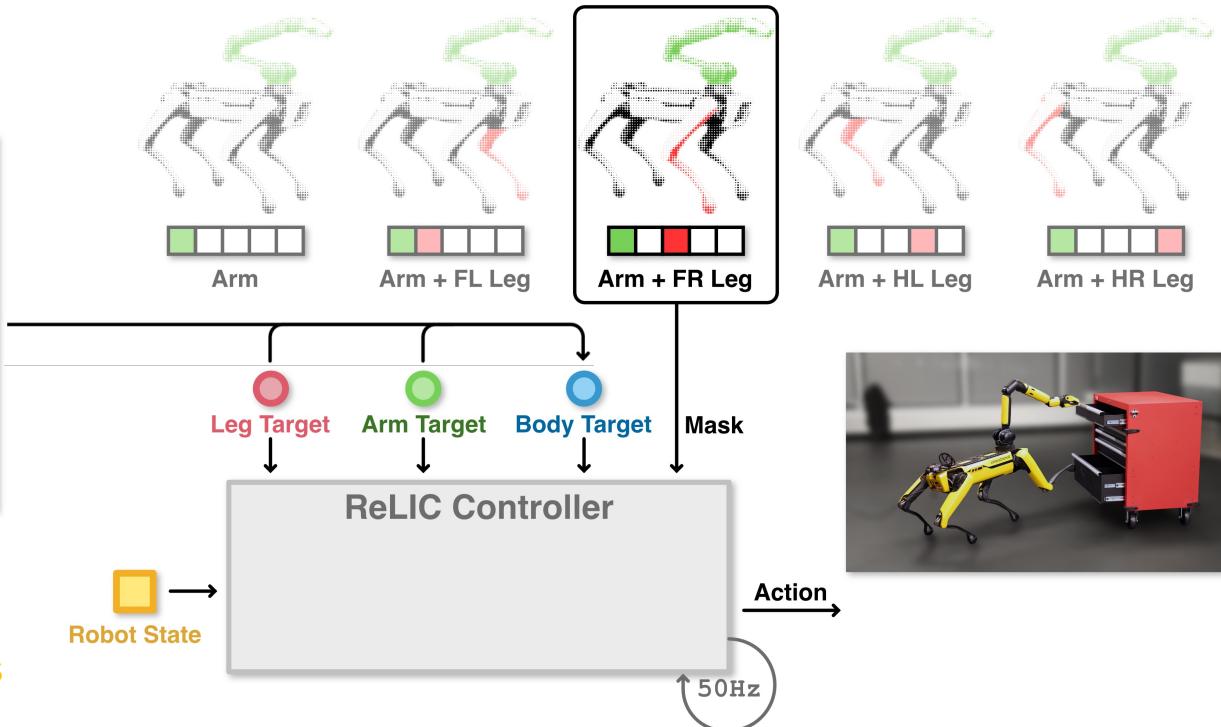
# Reinforcement Learning for Interlimb Coordination (ReLIC)



# Reinforcement Learning for Interlimb Coordination (ReLIC)

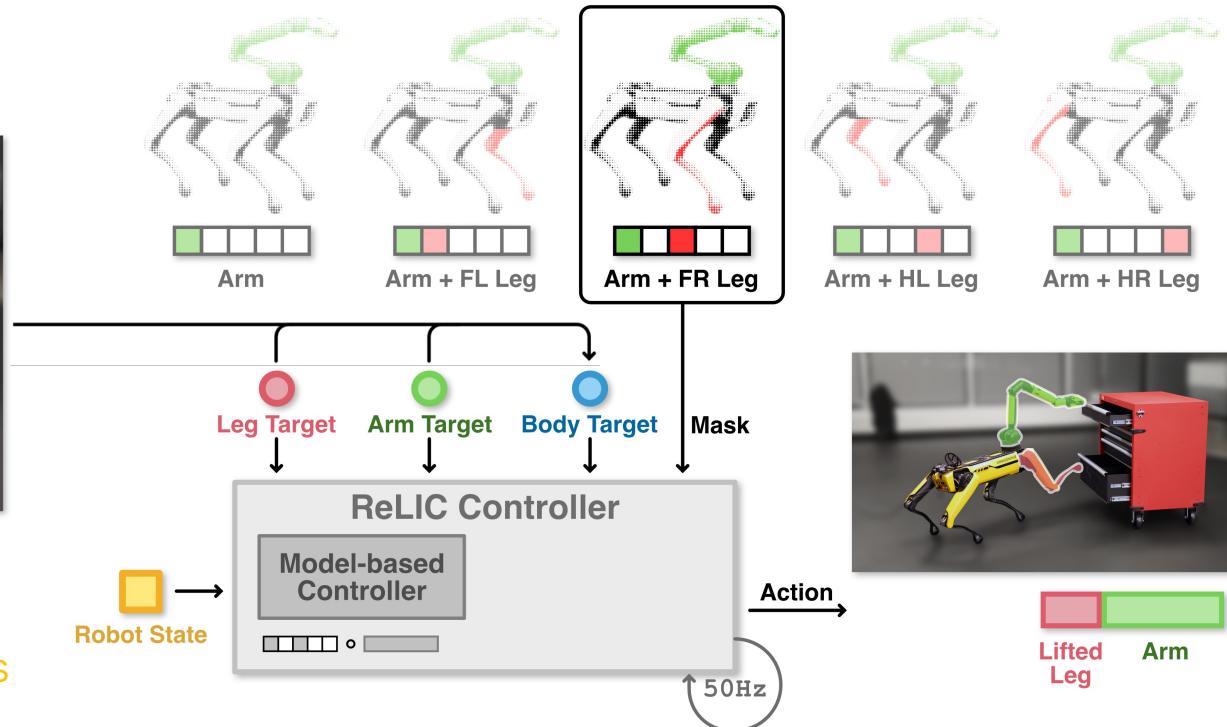


# Reinforcement Learning for Interlimb Coordination (ReLIC)



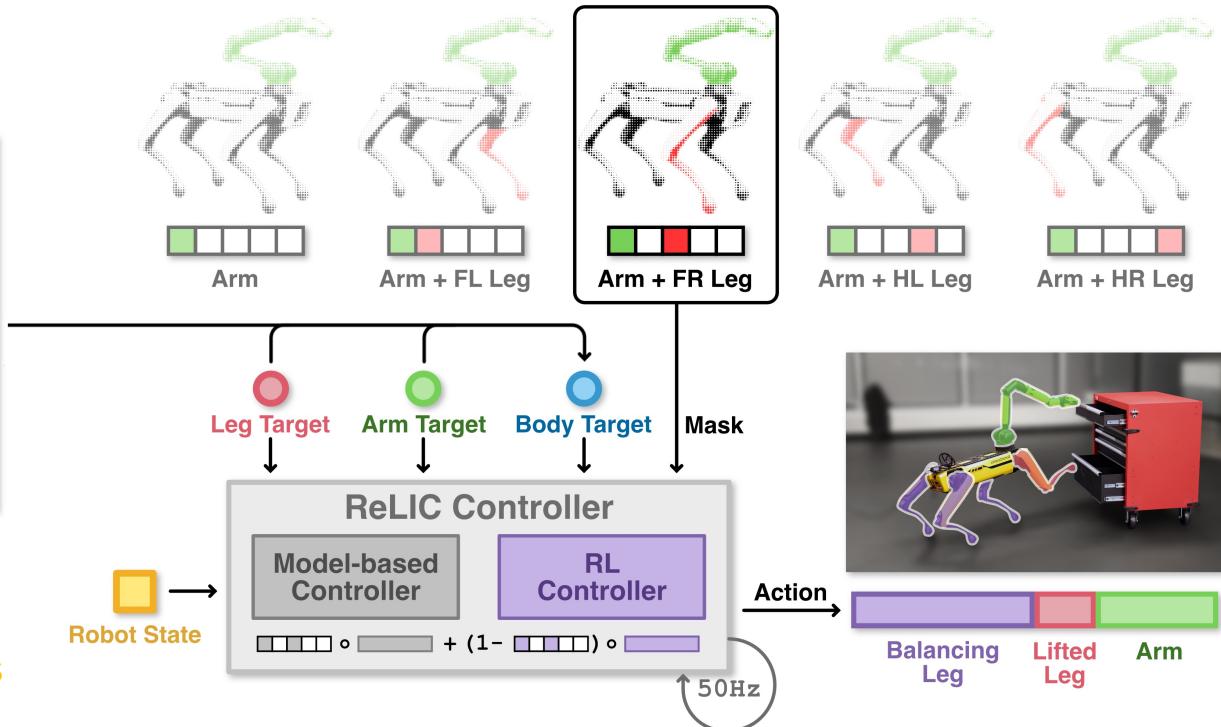
💡 Generate actions via the interplay of two modules

# Reinforcement Learning for Interlimb Coordination (ReLIC)



💡 Generate actions via the interplay of two modules

# Reinforcement Learning for Interlimb Coordination (ReLIC)

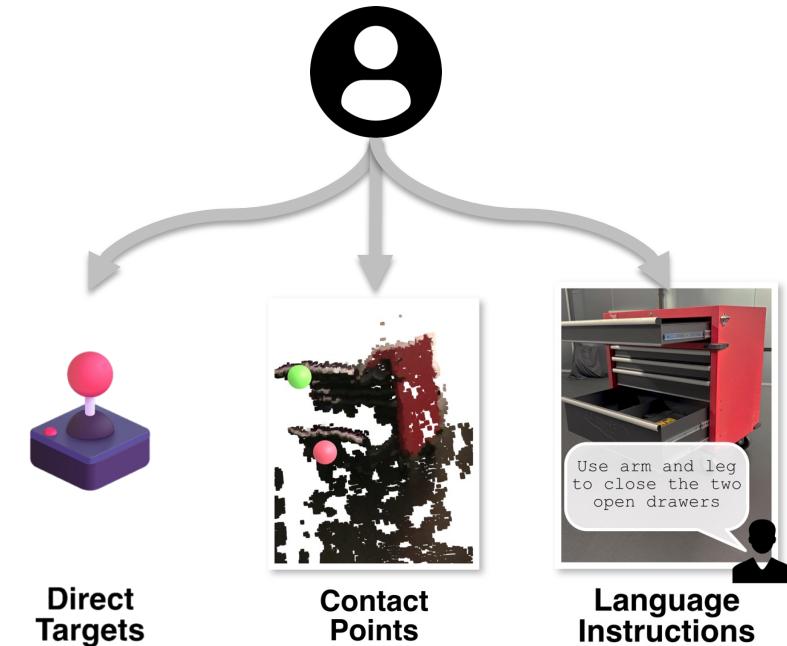


💡 Generate actions via the interplay of two modules

# ReLIC

## Task Interfaces

ReLIC can be interfaced with various types of user commands.



Task Interfaces  
Direct Targets



# Task Interfaces Contact Points



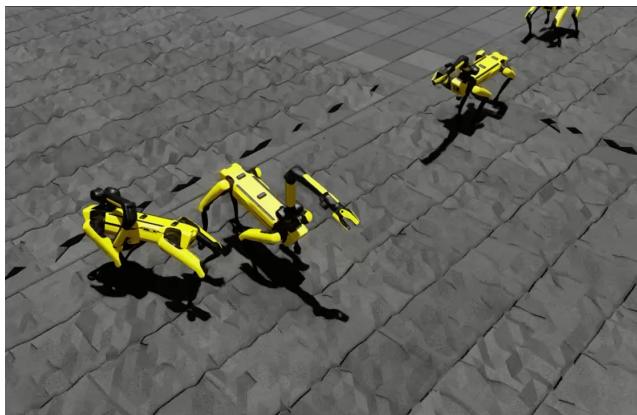
# Task Interfaces Language Instructions



# ReLIC

## Learning Transferrable Policy in Simulation

Training in simulation



Deployment in the real world



**Motor calibration:** Optimizes torque limits with CMA-ES<sup>1</sup> close the sim-to-real gap.

**Gait regularization:** Constraining contact-time patterns to stabilize locomotion.

<sup>1</sup>Nomura and Shibata. 2024

# Experiments

## End-Effector Tracking



Multi-limb Tracking

ReLIC



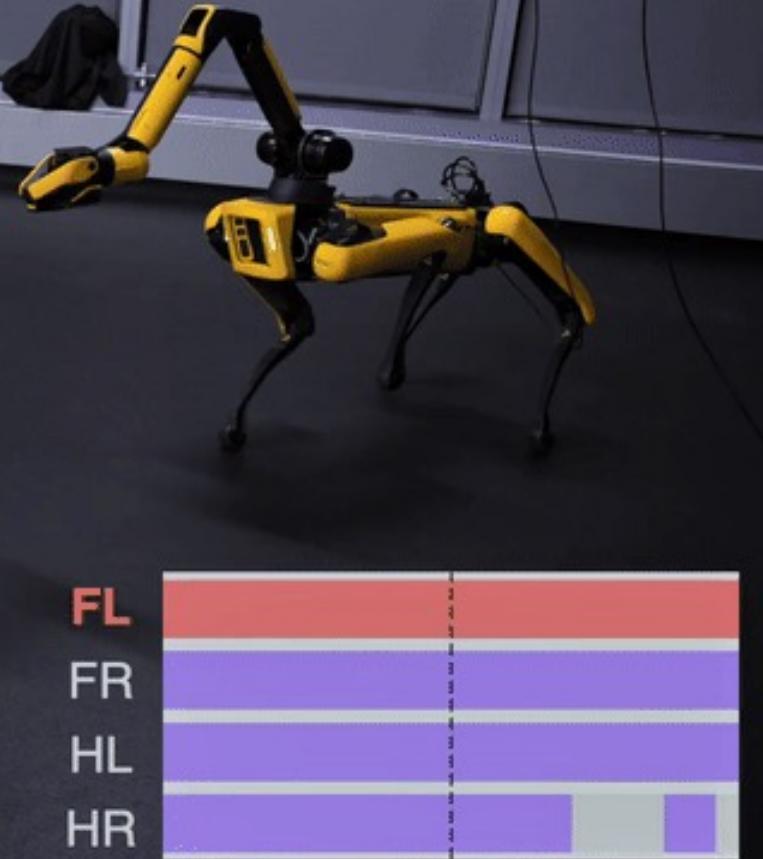
No Motor Calibration



No Gait Regularization



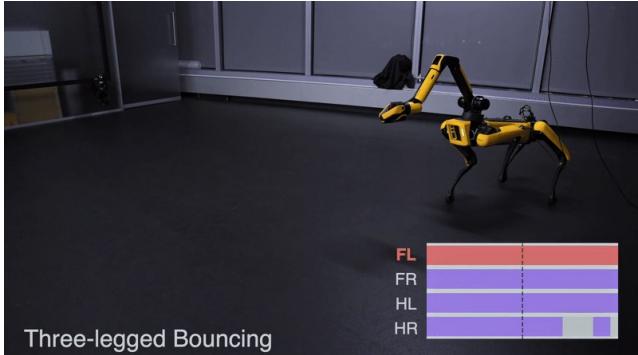
# Experiments Gait Transitions



Three-legged Bouncing

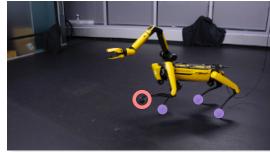
# Experiments

## Gait Transitions



Smoothly switching between different limb assignments *without pausing or failing*

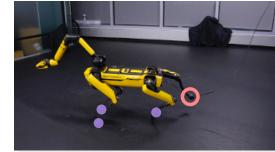
Bounce with FL Leg Lifted



Trot with Four Legs



Bounce with HR Leg Lifted

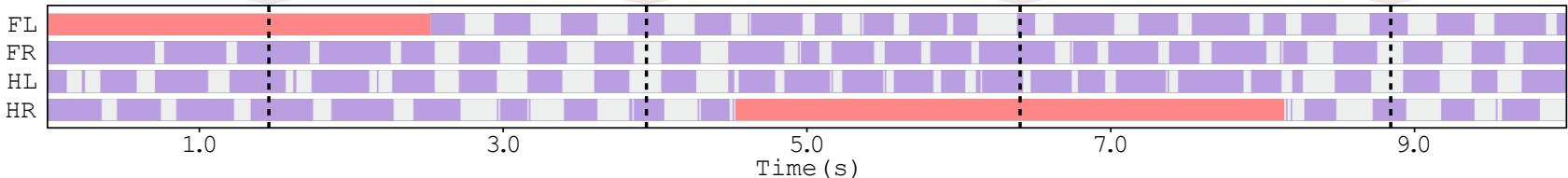


Trot with Four Legs

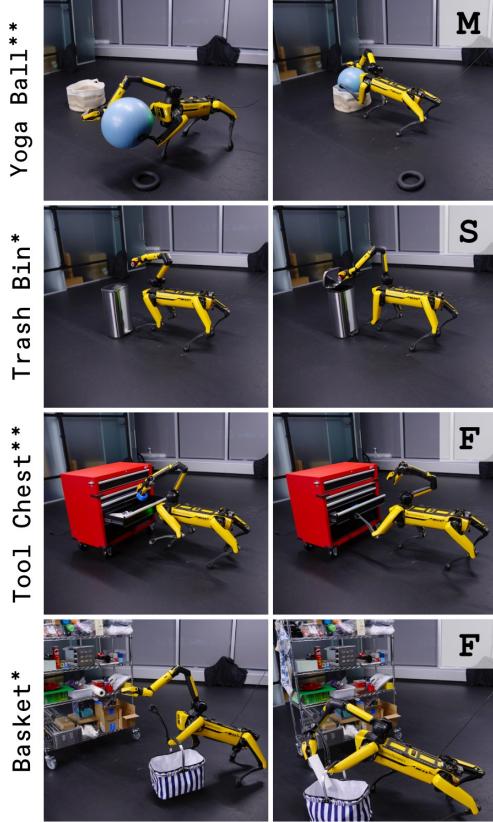
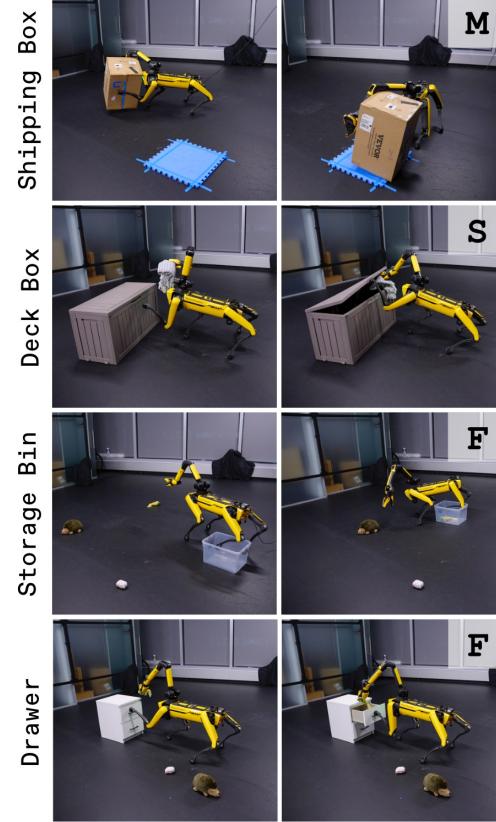


Snapshot

Foot Contact

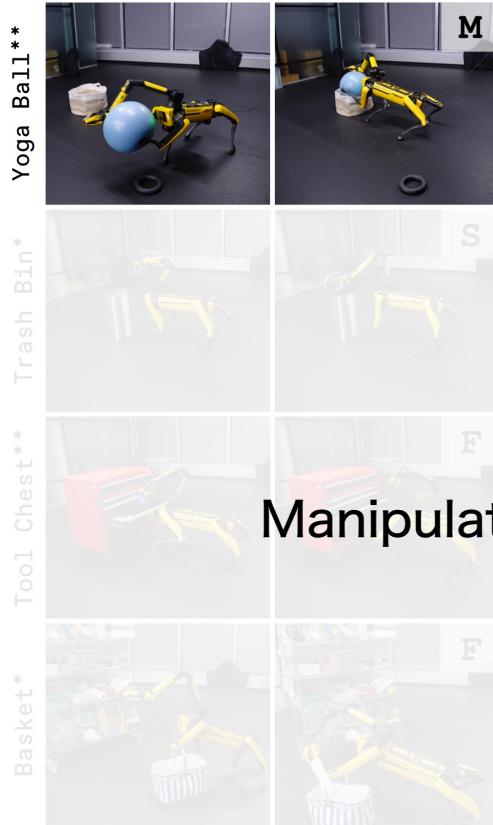
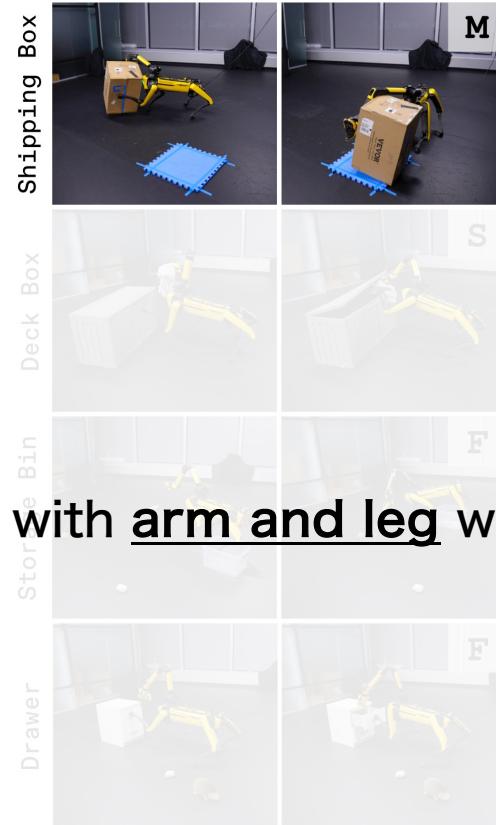
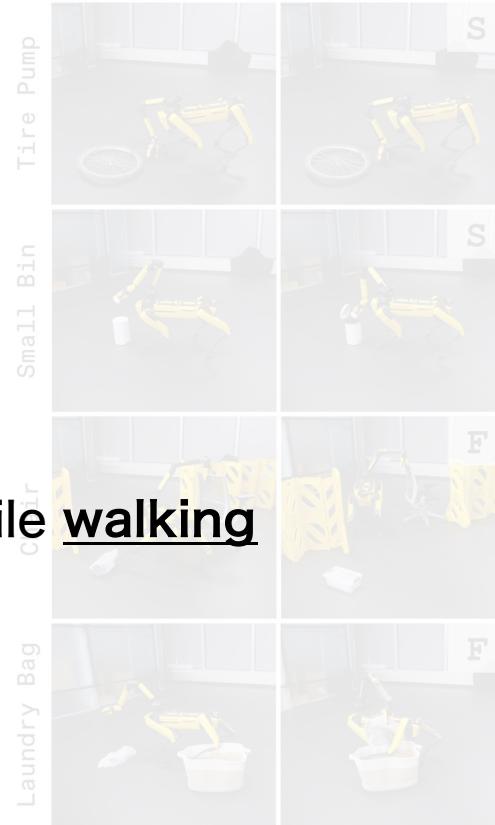


# Experiments Tasks



# Experiments

## Tasks: Mobile Interlimb Coordination



Manipulate with arm and leg while walking

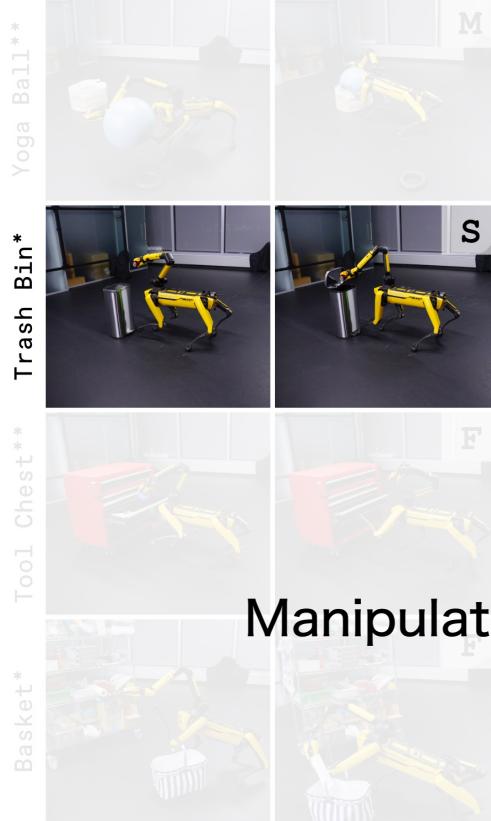
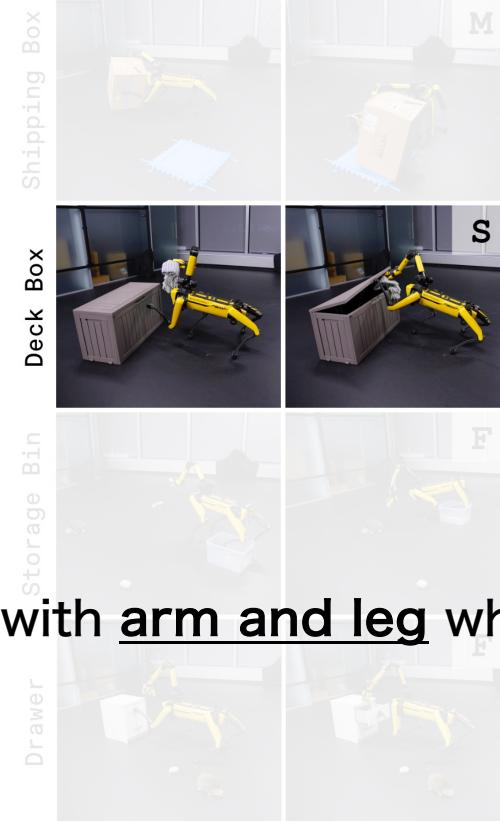
# Experiments

## Tasks: Mobile Interlimb Coordination



# Experiments

## Tasks: Stationary Interlimb Coordination



Manipulate with arm and leg while standing

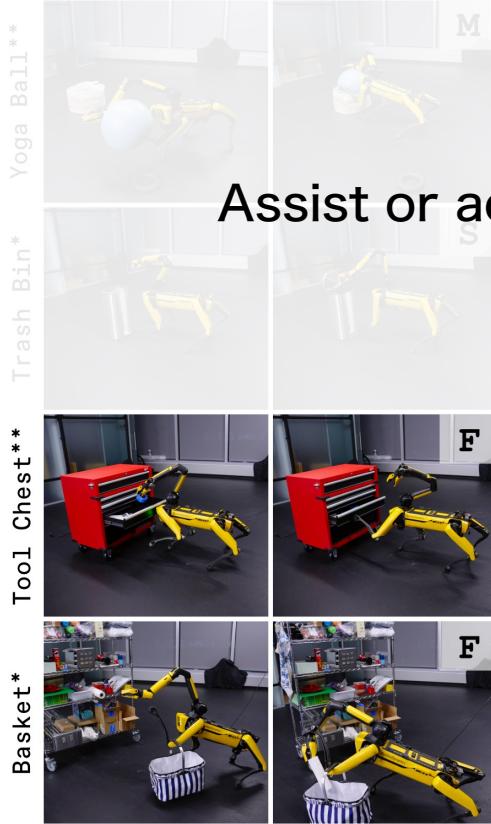
# Experiments

## Tasks: Stationary Interlimb Coordination



# Experiments

## Tasks: Foot-Assisted Manipulation



Assist or accelerate multi-step tasks with legs

# Experiments

## Tasks: Foot-Assisted Manipulation



# Experiments

## Dynamics Limb Assignments

Diverse assignment patterns are supported by ReLIC in these tasks.

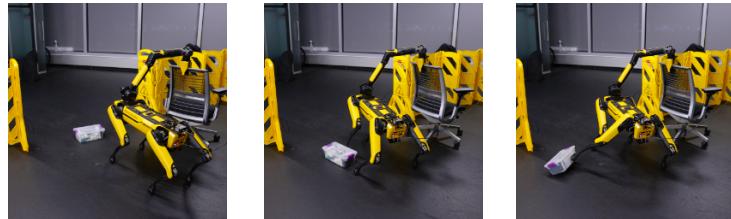
(A)



(B)



(C)



Arm  
FL  
FR  
HL  
HR

Time (s)

Arm  
FL  
FR  
HL  
HR

Time (s)

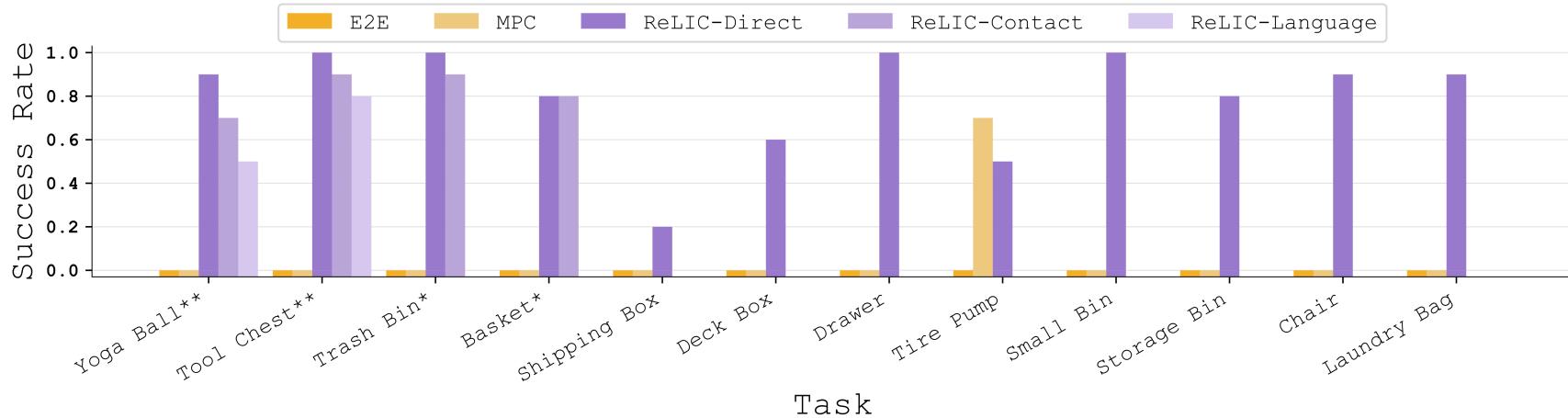
Arm  
FL  
FR  
HL  
HR

Time (s)

Legend: Leg Balancing (Grey), Manipulation Coordination (Red), Interlimb Coordination (Purple), Arm Manipulation (Green)

# Experiments

# Comparative Results

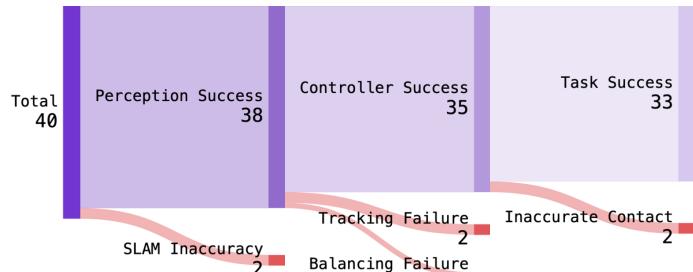


ReLIC achieves high success rates in most tasks, outperforming the end-to-end and MPC baselines

# Experiments

## Failure Analysis

We summarize failure cases in three categories:



## Semantic Reasoning



Mark-Based Visual Prompting

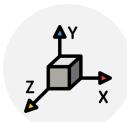


Physically Grounded  
Task Representation

Versatile Interfacing for  
Whole-Body Control



Policy Adaptation via  
Language Optimization



Robot Control

# Adaptation to new instruction-following tasks

Massive offline dataset



pre-train

Pre-trained VLA policy

$$\pi(a|s, l; \theta)$$

Pour the coffee beans into the container

Data for the new task

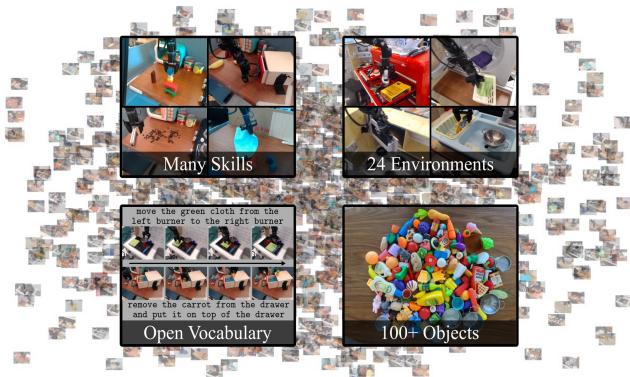


Fine-tune over policy parameters

Fine-tuning on each new task usually require  $10^2$  -  $10^3$  successful demos

# Adaptation to new instruction-following tasks

Massive offline dataset



pre-train

Pre-trained VLA policy

$$\pi(a|s, l; \theta)$$

Pour the coffee beans into the container

Data for the new task



💡 What if we instead adapt the instruction?

# Adaptation to new instruction-following tasks

Pre-trained VLA policy

$$\pi(a|s, l; \theta)$$



*Pour the coffee beans into the container*



Reach to the wooden tool on the table



Close the fingers



Lift the gripper upward by 10 cm



Move toward the blue bowl

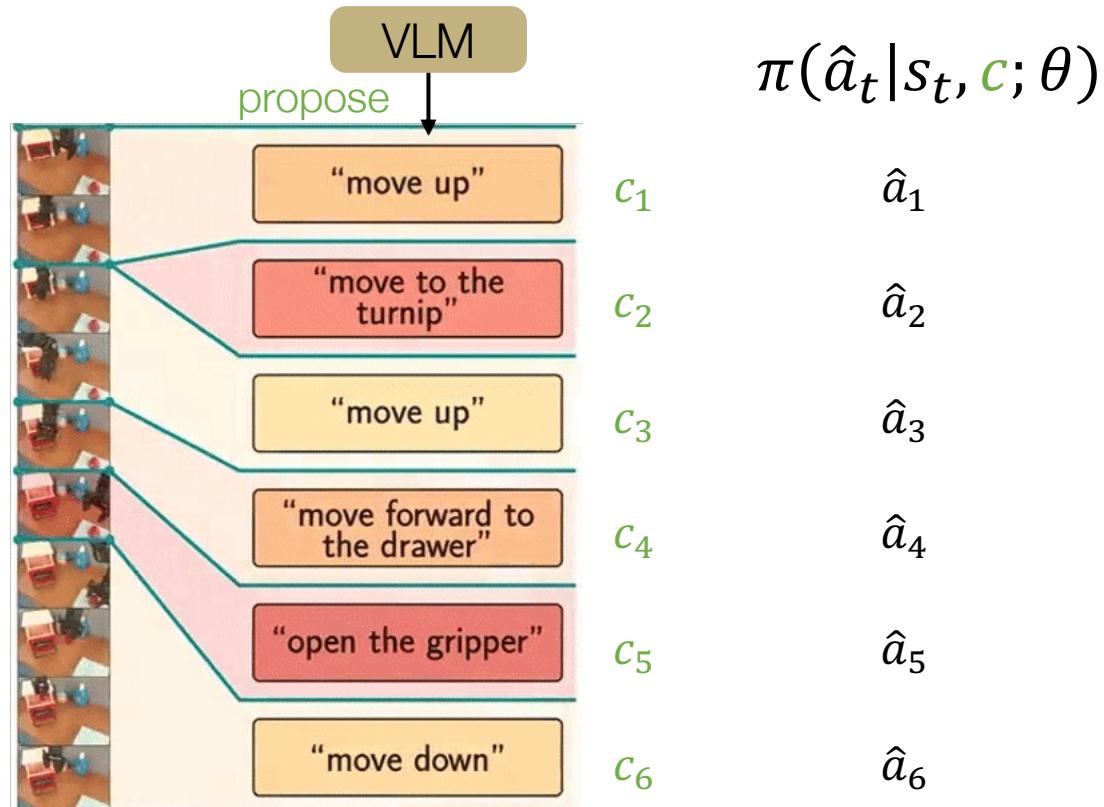


Rotate the gripper by 30 degrees counterclockwise

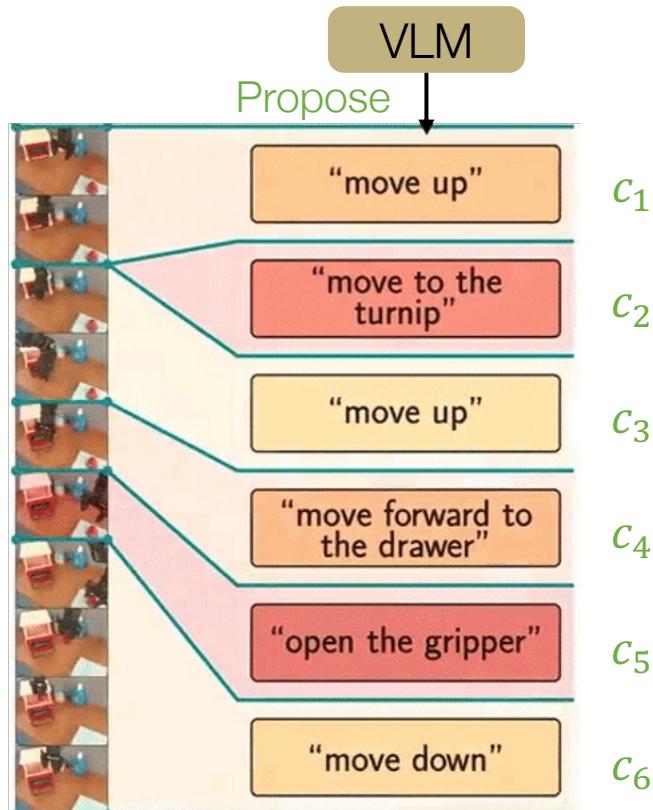
Pick up the shovel

The phrasing of the instruction matters!

# PALO: Policy Adaptation via Language Optimization



# PALO: Policy Adaptation via Language Optimization



$$\pi(\hat{a}_t | s_t, c; \theta)$$

$$\hat{a}_1 \quad \text{Freeze}$$

$\hat{a}_2$  Optimize instruction sequences using behavior cloning loss

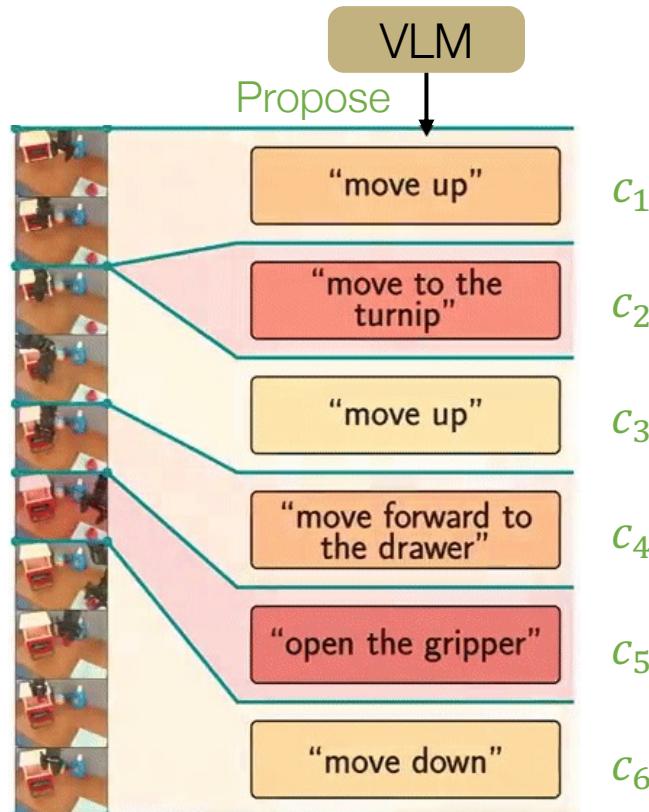
$$\hat{a}_3 \quad c^* = \arg \min_c \sum_t \|\hat{a}_t - a_t\|^2$$

$$\hat{a}_4$$

$$\hat{a}_5$$

$$\hat{a}_6$$

# PALO: Policy Adaptation via Language Optimization



$$\pi(\hat{a}_t | s_t, c; \theta)$$

$$\hat{a}_1$$

Freeze

$u$ : Subtask segmentation

$$\hat{a}_2$$

Optimize instruction sequences using behavior cloning loss

$$\hat{a}_3$$

$$c^*, u^* = \arg \min_{c, u} \sum_t \|\hat{a}_t - a_t\|^2$$

$$\hat{a}_4$$

Jointly optimize the temporal segmentation

$$\hat{a}_5$$

similar to prompt tuning in NLP

$$\hat{a}_6$$

Given only 5 demos, PALO is able to robustly solve unseen, temporally extended tasks.

PALO



pour the contents of the scoop into the bowl



move the gripper forward and down towards the 'scoop'

sweep the skittles into the bin after putting the mushroom in the container



move the gripper down towards the mushroom

put the beet toy/purple thing into the drawer



move the gripper down towards the drawer handle

pry out the pot in the drawer using the ladle



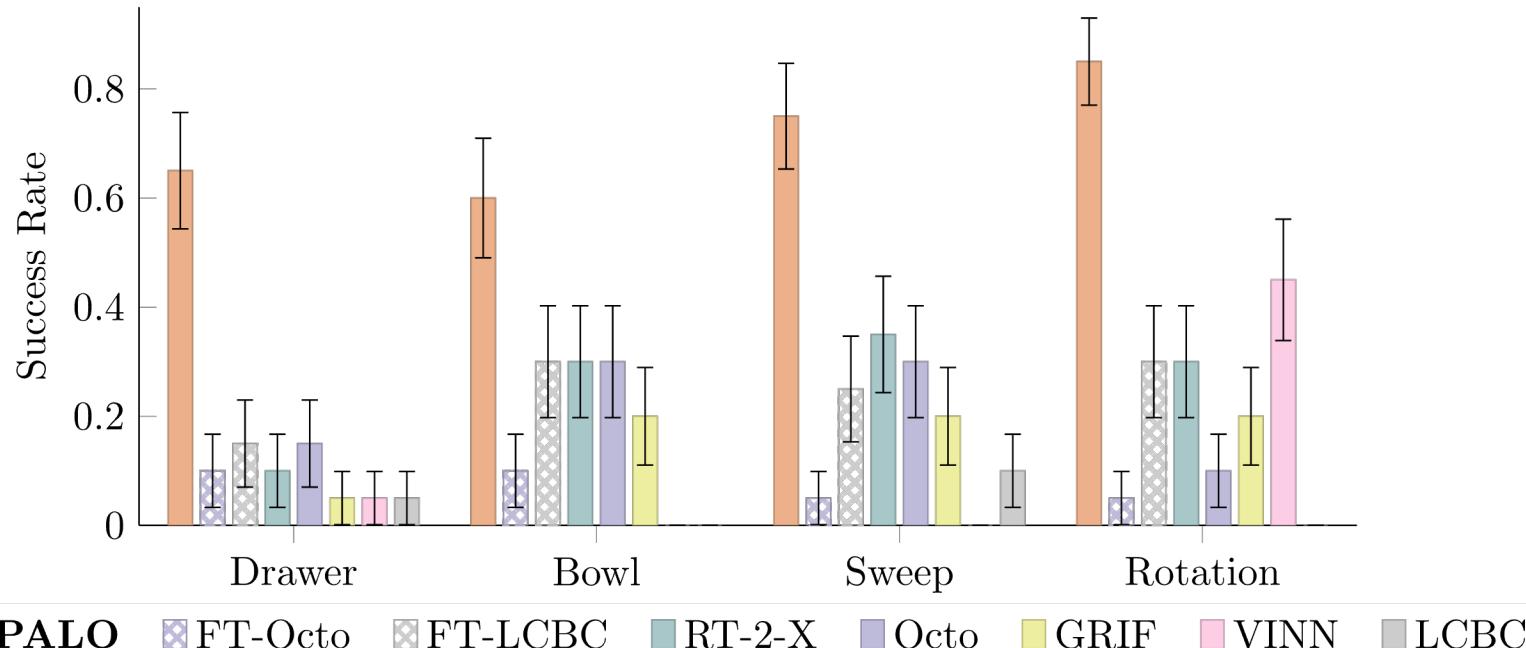
move the gripper right towards the ladle

Policy  
Fine-Tuning



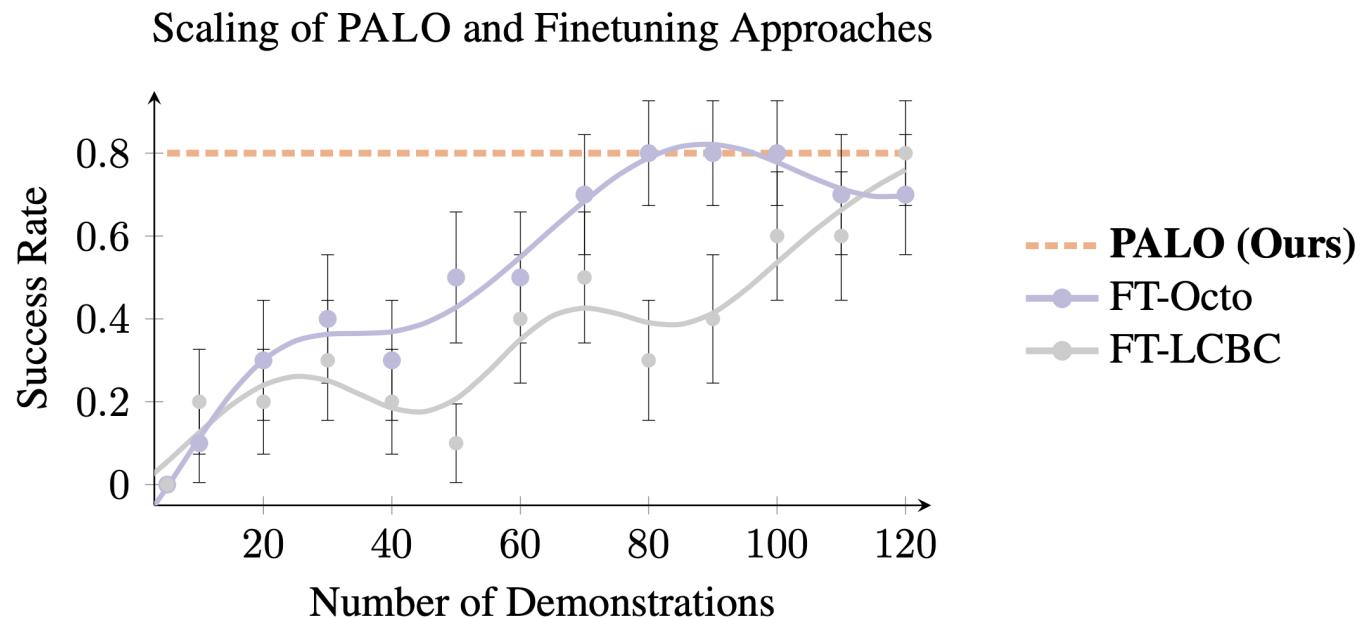
# Comparative Results

Evaluating on long-horizon and unseen skills tasks, PALO outperforms all conventional zero-shot generalization methods **by 3x** in terms success rate.



# Comparative Results

Performance of PALO with 5 demonstrations compared to finetuning the Octo model on different number of demonstrations.



## Semantic Reasoning



Mark-Based Visual Prompting

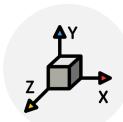


Physically Grounded  
Task Representation

Versatile Interfacing for  
Whole-Body Control



Policy Adaptation via  
Language Optimization



Robot Control

## Semantic Reasoning



Mark-Based Visual Prompting



Keypoint

Trajectory

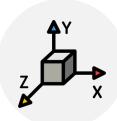
Subtask Instruction

...

Versatile Interfacing for  
Whole-Body Control

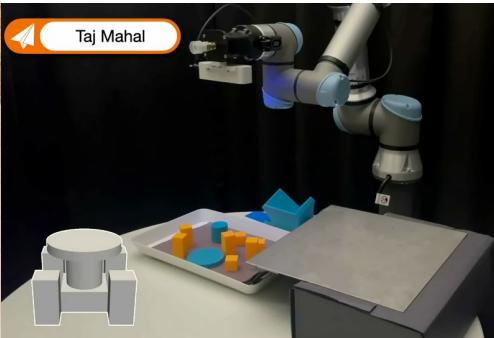


Policy Adaptation via  
Language Optimization



Robot Control

# Question?



Kuan Fang

Department of Computer Science  
Cornell University



**Cornell Bowers CIS**  
College of Computing  
and Information Science

