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Toward Open-World Robot Dexterity

Behavior-Level

Open-World 
Generalization

Environment-Level

Instruction-Level



Path to foundation models: Scaling up

[Lin et al. 2014; Liu et al. 2015; Yu et al. 2015; Chang et al. 2015; Heilbron et al. 2015; Abu-El-Haija et al. 2016; Mo et al. 2018; He et al. 2017]

massive datasets generalizable AI models

14M images
[Deng et al. 2009]

30M positions
[Silver et al. 2016]

45 TB of texts
[Brown et al. 2020]



Scaling up end-to-end robot learning as the solution 
massive robot data open-world robot dexerity



Challenges in scaling up robot learning

various variety of robot tasks learning requires physical interactions
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💡 Key insight: Convert motion planning into a series of QA problems that VLMs can solve.

Wipe the snack wrapper off the table using the brush.

How can we leverage a pre-trained VLM for robotic control?
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Use a set of keypoints to specify the motion trajectory for solving the task.

Wipe the snack wrapper off the table using the brush.

MOKA: Marking Open-world Keypoint Affordances

Fang*, Liu*, Abbeel, Levine. Multi-Task Domain Adaptation. RSS 2024
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2

grasp function target waypoints

✅ Separate semantics and motions

✅ Predictable on 2D images.

✅ Can specify diverse motions.

✅ Agnostic to the embodiment.



Challenge: Directly predicting keypoint coordinates requires fine-grained spatial reasoning.

Wipe the snack wrapper off the table using the brush.

MOKA: Marking Open-world Keypoint Affordances

grasp function target waypoints
Fang*, Liu*, Abbeel, Levine. Multi-Task Domain Adaptation. RSS 2024



To facilitate reasoning for the VLM, MOKA annotates a set of marks on the input image.

MOKA: Marking Open-world Keypoint Affordances

marks

P1

P2
P3

P4

P5

Q1
Q2 Q3

Q4

Wipe the snack wrapper off the table using the brush.

grasp function target waypoints
Fang*, Liu*, Abbeel, Levine. Multi-Task Domain Adaptation. RSS 2024



Without any training on any robot data, the VLM can solve the commanded manipulation task.
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MOKA: Marking Open-world Keypoint Affordances

marks

Wipe the snack wrapper off the table using the brush.

grasp function target waypoints
Fang*, Liu*, Abbeel, Levine. Multi-Task Domain Adaptation. RSS 2024



Use the broom to wipe the trash to the right side of the 
table after moving the eyeglasses into the case. VLM

text prompt
[high-level]

response 
[k-th subtask]

task-level 
reasoning

input image segmentation 

MOKA: Marking Open-world Keypoint Affordances

Fang*, Liu*, Abbeel, Levine. Multi-Task Domain Adaptation. RSS 2024



Use the broom to wipe the trash to the right side of the 
table after moving the eyeglasses into the case. VLMVLM

text prompt
[high-level]

text prompt
[low-level]

response 
[k-th subtask]

task-level 
reasoning

response 
[affordance]

motion-level 
reasoning

input image marked image motionsegmentation 

MOKA: Marking Open-world Keypoint Affordances

Fang*, Liu*, Abbeel, Levine. Multi-Task Domain Adaptation. RSS 2024



Without any training on any robot data, the VLM can solve the commanded manipulation task.
The prediction is robust to different instructions, poses, and objects.

MOKA: Marking Open-world Keypoint Affordances

Table 
cleaning

Fang*, Liu*, Abbeel, Levine. Multi-Task Domain Adaptation. RSS 2024



How to effectively fine-tune the VLM to improve generalization?

VLM
Fine-tune Generalize

GPT-4 pre-training used 
around 13 trillion tokens 



KALIE: Keypoint Affordance Learning from Imagined Environments

Tang, Rajkumar, Zhou, Walke, Levine, Fang. Fine-Tuning Vision-Language Models for Open-World Manipulation without Robot Data. ICRA 2025



Challenge: How to generate physically consistent images? 

Tang, Rajkumar, Zhou, Walke, Levine, Fang. Fine-Tuning Vision-Language Models for Open-World Manipulation without Robot Data. ICRA 2025

Directly generating images from scratch or inpainting the images often lead to poor quality.



KALIE uses a context image as additional inputs to the diffusion model, which specifies the 
geometric properties of the object to be inpainted.

Affordance-Aware Object Diversification

expert data
(s, y)

context
c

transformed context
f	(mi * c)

transformed mask
f	(mi)	+ mi

synthetic data
(s’, y’)

diffusion model g

Tang, Rajkumar, Zhou, Walke, Levine, Fang. Fine-Tuning Vision-Language Models for Open-World Manipulation without Robot Data. ICRA 2025



● Employ conditional diffusion models to diversify the training data.
● Fine-tune the VLM to predict affordances through low-rank adaptation.
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Tang, Rajkumar, Zhou, Walke, Levine, Fang. Fine-Tuning Vision-Language Models for Open-World Manipulation without Robot Data. ICRA 2025



KALIE robustly solves these tasks and consistently achieves superior performances compared 
to baselines.

Performance

Tang, Rajkumar, Zhou, Walke, Levine, Fang. Fine-Tuning Vision-Language Models for Open-World Manipulation without Robot Data. ICRA 2025



Physically Grounded 
Task Representation

Robot Control

Semantic Reasoning

Mark-Based Visual Prompting

Versatile Interfacing for 
Whole-Body Control

Policy Adaptation via 
Language Optimization



26

Can robot dog perform task with both arm and legs?



27

Can robot interact with objects 
using not only arms… 
but also legs?



Quadruped Loco-Manipulation with Arms and Legs

Liu et al., 2024 Ha et al., 2024

Manipulate with only the arm

Cheng et al., 2023 Lin et al., 2024

Repurpose legs for manipulation

Fixed limb roles Task-specific designsStatic limb coordination



Human Interlimb Coordination

Images created with GenAI

Humans can perform complex tasks by jointly using multiple limbs.



Loco-Manipulation via

Manipulate with arm and 
leg while walking

Manipulate with arm and 
leg while standing

Assist or accelerate 
multi-step tasks with legs

By coordinating the arm and legs, we aim to enable the robot to:

Interlimb Coordination



Task: Transporting the yoga ball 
to the other side of the room

Loco-Manipulation via Interlimb Coordination



Given assigned roles of limbs and 
their target trajectories

jointly control the arm and legs to 
solve the task

Loco-Manipulation via Interlimb Coordination



Given assigned roles of limbs and 
their target trajectories, 

jointly control the arm and legs to 
solve the task

Loco-Manipulation via Interlimb Coordination



Key Challenge

Precisely perform manipulation 
with the arm and a selected leg,

while maintaining stable locomotion 
with the remaining legs

Loco-Manipulation via Interlimb Coordination
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Key Challenge

Precisely perform manipulation 
with the arm and a selected leg,

while maintaining stable locomotion 
with the remaining limbs

Loco-Manipulation via Interlimb Coordination



Our Aims

ü Flexible coordination strategies

ü Dynamic limb assignments

ü Versatile task specifications

Loco-Manipulation via Interlimb Coordination



Reinforcement Learning for        
(ReLIC) Interlimb Coordination
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Reinforcement Learning for        
(ReLIC) Interlimb Coordination

Generate actions via the 
interplay of two modules

💡
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Reinforcement Learning for        
(ReLIC) Interlimb Coordination

Generate actions via the 
interplay of two modules

💡



Task Interfaces
ReLIC

ReLIC can be interfaced with various types of user commands.
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Direct Targets
Task Interfaces
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Task Interfaces
Contact Points
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Task Interfaces
Language Instructions



Learning Transferrable Policy in Simulation
ReLIC

Deployment in the real worldTraining in simulation

Motor calibration: Optimizes torque limits with CMA-ES1 close the sim-to-real gap.

Gait regularization: Constraining contact-time patterns to stabilize locomotion.
1Nomura and Shibata. 2024
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Experiments
End-Effector Tracking
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Experiments
Gait Transitions
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Bounce with FL Leg Lifted Bounce with HR Leg LiftedTrot with Four Legs Trot with Four Legs

Experiments
Gait Transitions

Smoothly switching between different limb 
assignments without pausing or failing



Experiments
Tasks



Manipulate with arm and leg while walking

Experiments
Tasks: Mobile Interlimb Coordination



Experiments
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Manipulate with arm and leg while standing

Experiments
Tasks: Stationary Interlimb Coordination



Experiments
Tasks: Stationary Interlimb Coordination



Assist or accelerate multi-step tasks with legs

Experiments
Tasks: Foot-Assisted Manipulation



Experiments
Tasks: Foot-Assisted Manipulation
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Experiments
Dynamics Limb Assignments
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Diverse assignment patterns are supported by ReLIC in these tasks.



Experiments
Comparative Results

ReLIC achieves high success rates in most tasks, 
outperforming the end-to-end and MPC baselines



Experiments
Failure Analysis

We summarize failure 
cases in three 
categories:
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Adaptation to new instruction-following tasks

Massive offline dataset

Walke, Black, Lee, ..., Fang, Finn, Levine. BridgeData V2: A Dataset for Robot Learning at Scale. CoRL 2023

𝜋 𝑎 𝑠, 𝑙; 𝜃)
pre-train

Pre-trained VLA policy

Fine-tuning on each new task usually require 102 - 103 successful demos

Fine-tune over policy parameters

Data for the new task

Pour the coffee beans into the container



Adaptation to new instruction-following tasks

Massive offline dataset

💡 What if we instead adapt the instruction?

Walke, Black, Lee, ..., Fang, Finn, Levine. BridgeData V2: A Dataset for Robot Learning at Scale. CoRL 2023

𝜋 𝑎 𝑠, 𝑙; 𝜃)
pre-train

Pre-trained VLA policy

Pour the coffee beans into the container

Data for the new task



Adaptation to new instruction-following tasks

𝜋 𝑎 𝑠, 𝑙; 𝜃)

Pour the coffee beans into the container

Reach to the wooden 
tool on the table

Close the fingers Lift the gripper upward 
by 10 cm

Move toward the blue 
bowl

Rotate the gripper by 30 
degrees counterclockwise

Pre-trained VLA policy

Pick up the shovel The phrasing of the instruction matters!



PALO: Policy Adaptation via Language Optimization

Myers*, Zheng*, Mees, Levine†, Fang†. Policy Adaptation via Language Optimization: Decomposing Tasks for Few-Shot Imitation. CoRL 2024

VLM
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PALO: Policy Adaptation via Language Optimization

Myers*, Zheng*, Mees, Levine†, Fang†. Policy Adaptation via Language Optimization: Decomposing Tasks for Few-Shot Imitation. CoRL 2024

VLM
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Freeze

Optimize instruction sequences using 
behavior cloning loss

𝑐∗ = argmin
(
,

)
#𝑎) − 𝑎) "



PALO: Policy Adaptation via Language Optimization

Myers*, Zheng*, Mees, Levine†, Fang†. Policy Adaptation via Language Optimization: Decomposing Tasks for Few-Shot Imitation. CoRL 2024

VLM
Propose 𝜋 )𝑎! 𝑠!, 𝑐; 𝜃)

𝑐!

𝑐"

𝑐#

𝑐$

𝑐%

𝑐&

#𝑎!

#𝑎"

#𝑎#

#𝑎$

#𝑎%

#𝑎&

Optimize instruction sequences using 
behavior cloning loss

𝑐∗, 𝑢∗ = argmin
(,	,

,
)
#𝑎) − 𝑎) "

Freeze

similar to prompt tuning in NLP

Jointly optimize the temporal segmentation

𝑢: Subtask segmentation



PALO

Policy 
Fine-Tuning

pour the contents of the scoop 
into the bowl

sweep the skittles into the bin 
after putting the mushroom in 
the container

put the beet toy/purple thing 
into the drawer

pry out the pot in the drawer 
using the ladle

Given only 5 demos, PALO is able to robustly solve unseen, temporally extended tasks.

Myers*, Zheng*, Mees, Levine†, Fang†. Policy Adaptation via Language Optimization: Decomposing Tasks for Few-Shot Imitation. CoRL 2024



Evaluating on long-horizon and unseen skills tasks, PALO outperforms all conventional zero-
shot generalization methods by 3x in terms success rate.

Comparative Results

Myers*, Zheng*, Mees, Levine†, Fang†. Policy Adaptation via Language Optimization: Decomposing Tasks for Few-Shot Imitation. CoRL 2024



Performance of PALO with 5 demonstrations compared to finetuning the Octo model on
different number of demonstrations.

Comparative Results

Myers*, Zheng*, Mees, Levine†, Fang†. Policy Adaptation via Language Optimization: Decomposing Tasks for Few-Shot Imitation. CoRL 2024
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Robot Control

Semantic Reasoning
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Keypoint Trajectory Subtask Instruction ...
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