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Path to foundation models: Scaling up

massive datasets f generalizable Al models f

14M images
[Deng et al. 2009]

30M positions
[Silver et al. 2016]

45 TB of texts
[Brown et al. 2020] ChatGPT

[Lin et al. 2014; Liu et al. 2015; Yu et al. 2015; Chang et al. 2015; Heilbron et al. 2015; Abu-El-Haija et al. 2016; Mo et al. 2018; He et al. 2017]



Scaling up end-to-end robot learning as the solution 7

massive robot data open-world robot dexerity




Challenges in scaling up robot learning

various variety of robot tasks learning requires physical interactions
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How can we leverage a pre-trained VLM for robotic control?

« Key insight: Convert motion planning into a series of QA problems that VLLMs can solve.

aking it appear that th

11



MOKA: Marking Open-world Keypoint Affordances

Use a set of keypoints to specify the motion trajectory for solving the task.

9 Wipe the snack wrapper off the table using the brush.

© grasp O function @ target

Fang’, Liu", Abbeel, Levine. Multi-Task Domain Adaptation. RSS 2024

O waypoints

== e -

Separate semantics and motions

Predictable on 2D images.
Can specify diverse motions.

Agnostic to the embodiment.



MOKA: Marking Open-world Keypoint Affordances

Challenge: Directly predicting keypoint coordinates requires fine-grained spatial reasoning.

@ grasp O functon @ target © waypoints

Fang’, Liu’, Abbeel, Levine. Multi-Task Domain Adaptation. RSS 2024




MOKA: Marking Open-world Keypoint Affordances

To facilitate reasoning for the VLM, MOKA annotates a set of marks on the input image.

@ grasp O function @ target © waypoints

Fang’, Liu’, Abbeel, Levine. Multi-Task Domain Adaptation. RSS 2024




MOKA: Marking Open-world Keypoint Affordances

Without any training on any robot data, the VLM can solve the commanded manipulation task.

O Wipe the snack wrapper off the table using the brush.

@ grasp O functon @ target © waypoints @ = T marks

Fang’, Liu", Abbeel, Levine. Multi-Task Domain Adaptation. RSS 2024




MOKA: Marking Open-world Keypoint Affordances

task-level
B e e reasoning
: 9 Use the broom_to wipe the trash tp the right side of the
| table after moving the eyeglasses into the case.
l {
'instruction": "Wipe the snack
package to the right side of the table
text prompt response using the brush.',
[high-level] [k-th subtask] 'object_inhand': 'broom’,
'object unattached": 'trash’,
'motion_direction": 'to the right',
H

input image segmentation

Fang’, Liu", Abbeel, Levine. Multi-Task Domain Adaptation. RSS 2024



MOKA: Marking Open-world Keypoint Affordances

task-level motion-level
T e~ reasoning reasoning
: 9 Use the broom_to wipe the trash tp the right side of the ’
| table after moving the eyeglasses into the case l l
text prompt response text prompt response
[high-level] [k-th subtask] [low-level] [affordance]

motion

input image segmentation

Fang’, Liu", Abbeel, Levine. Multi-Task Domain Adaptation. RSS 2024



MOKA: Marking Open-world Keypoint Affordances

Without any training on any robot data, the VLM can solve the commanded manipulation task.

The prediction is robust to different instructions, poses, and objects.

Fang’, Liu", Abbeel, Levine. Multi-Task Domain Adaptation. RSS 2024

different instructions, different poses |

Use the broom to sweep the trash  Sweeping the trash from left to Get the trash to the right side.
to the right side of the table. right with the broom. There is a broom you can use.

@ grasp keypoint O function keypoint ® target keypoint © waypoints

SIREICTORIVEYETITTS)



How to effectively fine-tune the VLM to improve generalization?

Fine-tune Generalize | R

GPT-4 pre-training used
around 13 trillion tokens



KALIE: Keypoint Affordance Learning from Imagined Environments‘

. — e | ]
collected fine-tune —'

9 “Sweep the snack wrapper away using the brush”

VLM

frozen

J

synthetic
LoRA

trained

J's

Tang, Rajkumar, Zhou, Walke, Levine, Fang. Fine-Tuning Vision-Language Models for Open-World Manipulation without Robot Data. ICRA 2025



Challenge: How to generate physically consistent images?

Directly generating images from scratch or inpainting the images often lead to poor quality.

input w/0 original w/0 context

Tang, Rajkumar, Zhou, Walke, Levine, Fang. Fine-Tuning Vision-Language Models for Open-World Manipulation without Robot Data. ICRA 2025



Affordance-Aware Object Diversification

KALIE uses a context image as additional inputs to the diffusion model, which specifies the
geometric properties of the object to be inpainted.

difftusion model g

expert data context transformed context  transformed mask synthetic data
(s,) c f(m;*c) f(my)+m; (s,

Tang, Rajkumar, Zhou, Walke, Levine, Fang. Fine-Tuning Vision-Language Models for Open-World Manipulation without Robot Data. ICRA 2025



Generated Data

e Employ conditional diffusion models to diversify the training data.

e Fine-tune the VLM to predict affordances through low-rank adaptation.

collected data

synthetic data

Tang, Rajkumar, Zhou, Walke, Levine, Fang. Fine-Tuning Vision-Language Models for Open-World Manipulation without Robot Data. ICRA 2025




Performance

KALIE robustly solves these tasks and consistently achieves superior performances compared
to baselines.

Table Drawer Towel Trowel USB

Methods Sweeping Closing Hanging Pouring Unplugging
VoxPoser [13] 3/15 8/15 1/15 0/15 0/15
MOKA [10] 9/15 9/15 5/15 LS 2/15
KALIE (Ours) 14/15 15/15 13/15 13/15 9/15

Tang, Rajkumar, Zhou, Walke, Levine, Fang. Fine-Tuning Vision-Language Models for Open-World Manipulation without Robot Data. ICRA 2025
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Can robot interact with objects

using not only arms---

but also legs?



Quadruped Loco-Manipulation with Arms and Legs

Manipulate with only the arm Repurpose legs for manipulation

-

A =
Liu et al., 2024 Ha et al., 2024

Fixed limb roles Static limb coordination Task-specific designs



Human Interlimb Coordination

Humans can perform complex tasks by jointly using multiple limbs.




Loco-Manipulation via Interlimb Coordination

By coordinating the arm and legs, we aim to enable the robot to:

Manipulate with arm and Manipulate with arm and Assist or accelerate
leg while walking leg while standing multi-step tasks with legs



Loco-Manipulation via Interlimb Coordination

Task: Transporting the yoga ball
to the other side of the room




Loco-Manipulation via Interlimb Coordination

Given assigned roles of limbs and
their target trajectories




Loco-Manipulation via Interlimb Coordination

Jointly control the arm and legs to
solve the task




Loco-Manipulation via Interlimb Coordination

Key Challenge




Loco-Manipulation via Interlimb Coordination

Key Challenge

Precisely perform manipulation
with the arm and a selected leg




Loco-Manipulation via Interlimb Coordination

Key Challenge

arm selected leg

while maintaining stable locomotion
with the remaining limbs




Loco-Manipulation via Interlimb Coordination

v Flexible coordination strategies
v' Dynamic limb assignments

v Versatile task specifications
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Reinforcement Learning for : o
(ReLIC) Interlimb Coordination

Arm Arm + FL Leg Arm + FR Leg Arm + HL Leg Arm + HR Leg

ReLIC Controller
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Reinforcement Learning for : o
(ReLIC) Interlimb Coordination

e 5@
Arm Arm + FL Leg \ Arm + FR Leg ) Arm + HL Leg Arm + HR Leg
[ [ 1
0] O (@)

Leg Target Arm Target Body Target |Mask

ReLIC Controller




Reinforcement Learning for : o
(ReLIC) Interlimb Coordination

e 5@
Arm Arm + FL Leg \ Arm + FR Leg ) Arm + HL Leg Arm + HR Leg
[ [ 1
0] O (@)

Leg Target Arm Target Body Target |Mask

ReLIC Controller




Reinforcement Learning for : o
(ReLIC) Interlimb Coordination

i i E k::
HEEEE EEEER EENEE
Arm Arm + FL Leg Arm + FR Leg ) Arm + HL Leg Arm + HR Leg

O O O

Leg Target Arm Target Body Target |Mask

ReLIC Controller
Model-based

—_ Controller Action
o — I
Robot State

N CYE— Lifted Arm
50Hz Leg




Reinforcement Learning for : o
(ReLIC) Interlimb Coordination

NEEEN HEEEn NEEEE HEEEN

Arm Arm + FL Leg Arm + FR Leg Arm + HL Leg Arm + HR Leg

[ [ 1
O O O

Leg Target Arm Target Body Target |Mask

ReLIC Controller

Model-based RL
—_— Controller Controller Action

v : — | 1 |
Robot State

OITI ol |+ (1- ) ol ] Balancing Lifted Arm
@ Leg Leg




ReLIC

Task Interfaces

ReLIC can be interfaced with various types of user commands.

Use arm and leg
to close the two
open drawers

Direct Contact Language
Targets Points Instructions













ReLIC

Learning Transferrable Policy in Simulation

Deployment in the real world

Motor calibration: Optimizes torque limits with CMA-ES' close the sim-to-real gap.

Gait regularization: Constraining contact-time patterns to stabilize locomotion.



eriments _}_
End-Effector Trac

pa—

Multi-limb Tracking



No Motor Calibration No Gait Regularization




Experiments |
Gait Transitions
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Exp_eriments .
Gait Transitions

Smoothly switching between different limb
assignments wrthout pausing or failing

Three-legged Bouncing

Snapshot °y

FL
FR
HL
HR

1.0 3.0 5.0 7.0 9.0
Time (s)

Foot Contact






Experiments
Tasks: Mobile Interlimb Coordination

| M

Yoga Ball**
Shipping Box

Manipulate with arm and leg while walking




Experiments
Tasks: Mobile Interlimb Coordination




Experiments
Tasks: Stationary Interlimb Coordination

Tire Pump

Deck Box

Trash Bin*
Small Bin

Manipulate with arm and leg while standing




Experiments
Tasks: Stationary Interlimb Coordination

@—?ré; Targets (6x speed)

|~ g




Experiments
Tasks: Foot-Assisted Manipulation

Assist or accelerate multi-step tasks with legs

Tool Chest**
Storage Bin

Basket*
Drawer




Experiments
Tasks: Foot-Assisted Manipulation




Experiments
Dynamics Limb Assignments

Diverse assignment patterns are supported by ReLIC in these tasks.

(a)

Arm - Arm i i Arm ' ' i
FL ' FL : : FL ' - '
FR E FR E E FR E E :
HL : HL : : HL : : .
HR : HR : : HR : : :

Time (s) Time (s) Time (s)

Leg Balancireg | ipmietibmb CoodégiaRalancing Arm Manipulation Interlimb Coordination



Experiments_
Comparative Results
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ReLIC achieves high success rates in most tasks,
outperforming the end-to-end and MPC baselines



ExQeriments _
Failure Analysis

We summarize failure
cases In three
categories:

Controller Success Task Success

Total Perception Success 35

40 38

Tracking Failure Inaccurate Contact
] m

SLAM Inaccuracy
2™ Balancing Failure
1=
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Adaptation to new instruction-following tasks

Pour the coffee beans into the container

Massive offline dataset
i Data for the new task

o g= = =

e Pre-trained VLA policy

= u’“ .
L5 2% pre-train
2 =- ——{mlals, 1 0)

Fine-tune over policy parameters

Fine-tuning on each new task usually require 102 - 103 successful demos

Walke, Black, Lee, ..., Fang, Finn, Levine. BridgeData V2: A Dataset for Robot Learning at Scale. CoRL 2023



Adaptation to new instruction-following tasks

Pour the coffee beans into the container

Massive offline dataset

y & K ESF =B g
3 5 Y =
= Pre-trained VLA policy

s “# pre-train
2 als, 5 0)

Data for the

Walke, Black, Lee, ..., Fang, Finn, Levine. BridgeData V2: A Dataset for Robot Learning at Scale. CoRL 2023

new task




Adaptation to new instruction-following tasks

Pre-trained VLA policy

m(als, ;)

Pour the coffee beans into the container

Reach to the wooden Close the fingers Lift the gripper upward Move toward the blue Rotate the gripper by 30
tool on the table by 10 cm bow! degrees counterclockwise

Pick up the shovel



PALO: Policy Adaptation via Language Optimization

7T(atlst' oy 9)

propose
“move up” Cq a,
C2 as
“move up” C3 ds
“move forward to ~
the drawer Cq %)
“move down" Ce dg

Myers’, Zheng’, Mees, Levine', Fang’. Policy Adaptation via Language Optimization: Decomposing Tasks for Few-Shot Imitation. CoRL 2024



PALO: Policy Adaptation via Language Optimization

7T(&tlst' oy 8)

Freeze

Propose

“move up” Cq a,

~  Optimize instruction sequences using

o a . .
behavior cloning loss
move up C3 ds ) . A ,
¢ =argmin ) [la, — a|
“move forward to ~ t

the drawer Cy Ay
- as

“move down" Ce dg

Myers’, Zheng’, Mees, Levine', Fang’. Policy Adaptation via Language Optimization: Decomposing Tasks for Few-Shot Imitation. CoRL 2024



PALO: Policy Adaptation via Language Optimization

Propose

“move up”

“move up”

“move fowvarg to
the drawer

“move down"

7T(&tlst' oy 8)

~ Freeze u: Subtask segmentation
a;

~  Optimize instruction sequences using
behavior cloning loss

a3 * * . A 2

c’,u” = argmin E la: — a.ll
~ c,u t
ay . o

Jointly optimize the temporal segmentation
as - -
similar to prompt tuning in NLP

a

Myers’, Zheng’, Mees, Levine', Fang’. Policy Adaptation via Language Optimization: Decomposing Tasks for Few-Shot Imitation. CoRL 2024



Given only 5 demos, PALO is able to robustly solve unseen, temporally extended tasks.

pour the contents of the scoop sweep the skittles into the bin put the beet toy/purple thing pry out the pot in the drawer
into the bowl after putting the mushroom in into the drawer using the ladle
the container

move the gripper forward and move the.gripper down towards move the gripper down move the.gripper right towards
down towards the*scoop the mushroorn towards the drawer handle - ladle *

Policy
Fine-Tuning

Myers’, Zheng’, Mees, Levine', Fang’. Policy Adaptation via Language Optimization: Decomposing Tasks for Few-Shot Imitation. CoRL 2024



Comparative Results

Evaluating on long-horizon and unseen skills tasks, PALO outperforms all conventional zero-
shot generalization methods by 3x in terms success rate.
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Myers’, Zheng’, Mees, Levine', Fang’. Policy Adaptation via Language Optimization: Decomposing Tasks for Few-Shot Imitation. CoRL 2024



Comparative Results

Performance of PALO with 5 demonstrations compared to finetuning the Octo model on
different number of demonstrations.

Scaling of PALO and Finetuning Approaches

0.8 | ] I I } I l
g 06 [ 1] % | PALO (Ours)
7 I R T 1 I FT-Octo
9 04 | 1T 1 T
3 T At 8 | | FT-LCBC
©“ 0.2 I | I T J

0 71 |

20 40 60 80 100 120
Number of Demonstrations

Myers’, Zheng’, Mees, Levine', Fang’. Policy Adaptation via Language Optimization: Decomposing Tasks for Few-Shot Imitation. CoRL 2024
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Question?

o oﬁé‘fhegripper down
towards th'eA drawer handle -

Kuan Fang

Department of Computer Science
Cornell University

Cornell Bowers CIS
College of Computing
and Information Science







