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Some Recent Breakthroughs
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Key Ingredient: Imitation Learning
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Key Ingredient: Teleoperation for Data
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Supervised Learning
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Supervised Learning: Given a training dataset of labeled data D
= {(x;,v;)}\_,, train the model pg (y|x) by minimizing a loss function
(maximize likelihood in this case):

6" = arg max X, log pe (ilx;)




Behavior Cloning

e Supervised learning from expert demonstrations
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Behavior Cloning: Given a training dataset of (expert) behaviors D
= {(s;, a;) }i-, train the policy g (a|s;) to maximize the likelihood:

. * Classification loss
0" = darg max Xp TTg (at |St) * Regression loss

0




Limitation of Behavior Cloning
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Collecting more demonstrations

Demos from other initial states u
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Collecting more demonstrations




Dagger: Dataset Aggregation

e BC trains only on expert states, but during deployment the learner
visits different states - compounding errors

* DAgger solves this by actively collecting data on the learner’s own
state distribution and getting expert labels on those states




Dagger: Dataset Aggregation

Human drives




Dagger: Dataset Aggregation
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Dagger: Dataset Aggregation
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Dagger: Dataset Aggregation

After many iterations ....
we are able to drive like a human!




Dagger: Dataset Aggregation

Initialize with a random policy my # Can be BC
Initialize empty data buffer D « {}
Fori=1,..,N

Execute policy m; in the real world and collect data

D; = {Sp,aq,S1, a1, -+ } # Also called a rollout

Query the expert for the optimal action on learner states
Di = {SO' T[*(SO)' S1, T[*(Sl)' }
Aggregate data D « D U D;

Train a new learner on this dataset Ti4q < Train(D)

Select the best policy in .41




ACT: Action Chunking with Transformers

* ACT to predict the sequence of future actions given the current

observations 7y (as.¢x|st)
* mitigate compounding error, deal with non-Markovian or noisy demonstrations
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ACT: Action Chunking with Transformers

* ACT to predict the sequence of future actions given the current
observations 7y (as.¢x|st)

action sequence
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ACT: Action Chunking with Transformers

* 50 demonstration per task, chunk size 90

™ 92%




Diffusion Policy

e Uses Denoising Diffusion Probabilistic Models (DDPMs) to generate
actions

Forward Diffusion Process

Reverse Denoising Process




Denoising Diffusion Probabilistic Models
(DDPMs)

* Forward process (left - right): adds Gaussian noise step by step

xo ~ q(xg) (real data)

q(z; [z 1) =N (v 1— Bz q, 31&1)

Ty = \/ourg+ V1 —apE, o = H(l - 481) ,81”62, . :/BT Known and fixed
ENN(O,I) =1

Forward Diffusion Process

o — 1 — -+ — zp ~ N(0,1)




Denoising Diffusion Probabilistic Models
(DDPMs)

* Reverse process (right - left): learned denoising network predlcts
noise or x;_1 , ”
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Reverse Denoising Process

Training loss L = Ea:n,t,e [HE - Eﬂ(ﬂft: t)HZ]

e ¢is known
Ly — A/ Oy + V 1-— Qi €, € ~ N(Oi I) ® I;is computed from xg and €

e The model learns to recover the added noise
The reverse process uses a neural network

to predict that same noise: Eg(fﬂt,t) ~ € Pﬂ(iﬂt 1 | $t) — N(#H(T’t:t)s Et)
1 By
Lz — /1 —arep(a,t) i, t) = — |2y — € :n,t)
T = N po(xe,t) ,-—l_ﬁt t S o(xt,t)




Diffusion Policy

Input: Image Observation Sequence Observation O« O
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Diffusion Policy

e Better modeling of multi-modal demonstrations
* Scalability to high-dimensional action spaces

Diffusion Policy LSTM-GMM IBC




Diffusion Policy

https://diffusion-policy.cs.columbia.edu/



https://diffusion-policy.cs.columbia.edu/
https://diffusion-policy.cs.columbia.edu/
https://diffusion-policy.cs.columbia.edu/
https://diffusion-policy.cs.columbia.edu/

summary

* Imitation learning
* Behavior cloning

* Dagger

* ACT

 Diffusion policy




Further Reading

e Dagger: A Reduction of Imitation Learning and Structured Prediction
to No-Regret Online Learning https://arxiv.org/abs/1011.0686

* ACT: Learning Fine-Grained Bimanual Manipulation with Low-Cost
Hardware https://arxiv.org/abs/2304.13705

* Diffusion Policy: Visuomotor Policy Learning via Action Diffusion
https://arxiv.org/abs/2303.04137v4
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