

Imitation Learning

CS 6341 Robotics
Professor Yu Xiang
The University of Texas at Dallas

Some Recent Breakthroughs

Physical Intelligence <https://www.physicalintelligence.company/blog/pi0>

Some Recent Breakthroughs

Key Ingredient: Imitation Learning

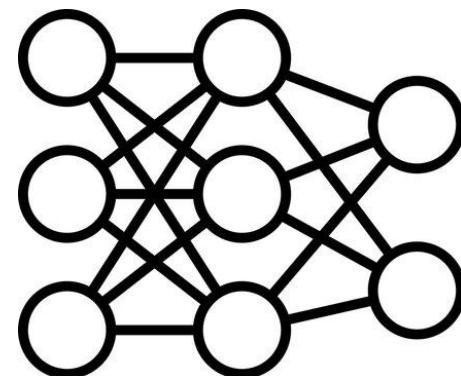
Kinesthetic Teaching

Teleoperation

Collect Demonstrations

(state, action)

A Dataset of State-Action Pairs



Train a Policy Network

Deploy the Policy Network

Key Ingredient: Teleoperation for Data Collection

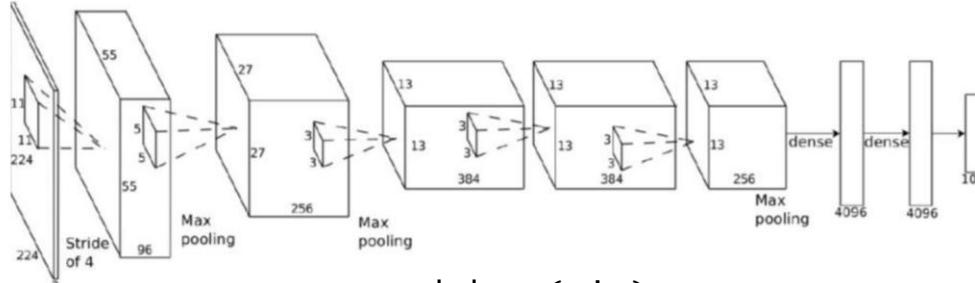
<https://mobile-aloha.github.io/>

<https://yanjieze.com/TWIST/>

Tesla

Supervised Learning

input x



model $p_\theta(y|x)$

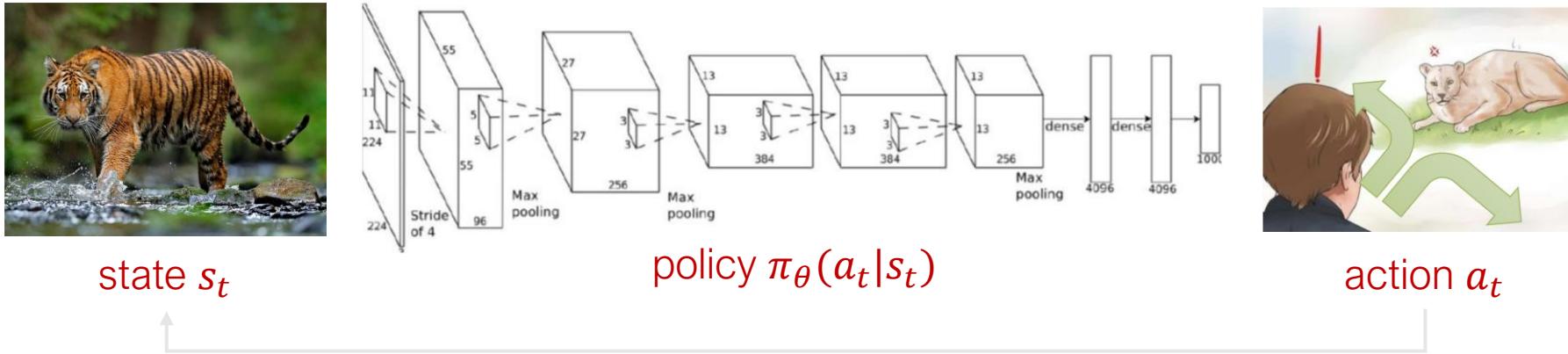
ragdoll
samoyed
tiger
⋮
bear
prediction y

Supervised Learning: Given a training dataset of labeled data \mathcal{D} $= \{(x_i, y_i)\}_{i=1}^N$, train the model $p_\theta(y|x)$ by minimizing a loss function (maximize likelihood in this case):

$$\theta^* = \arg \max_{\theta} \sum_D \log p_\theta(y_i|x_i)$$

Behavior Cloning

- Supervised learning from expert demonstrations

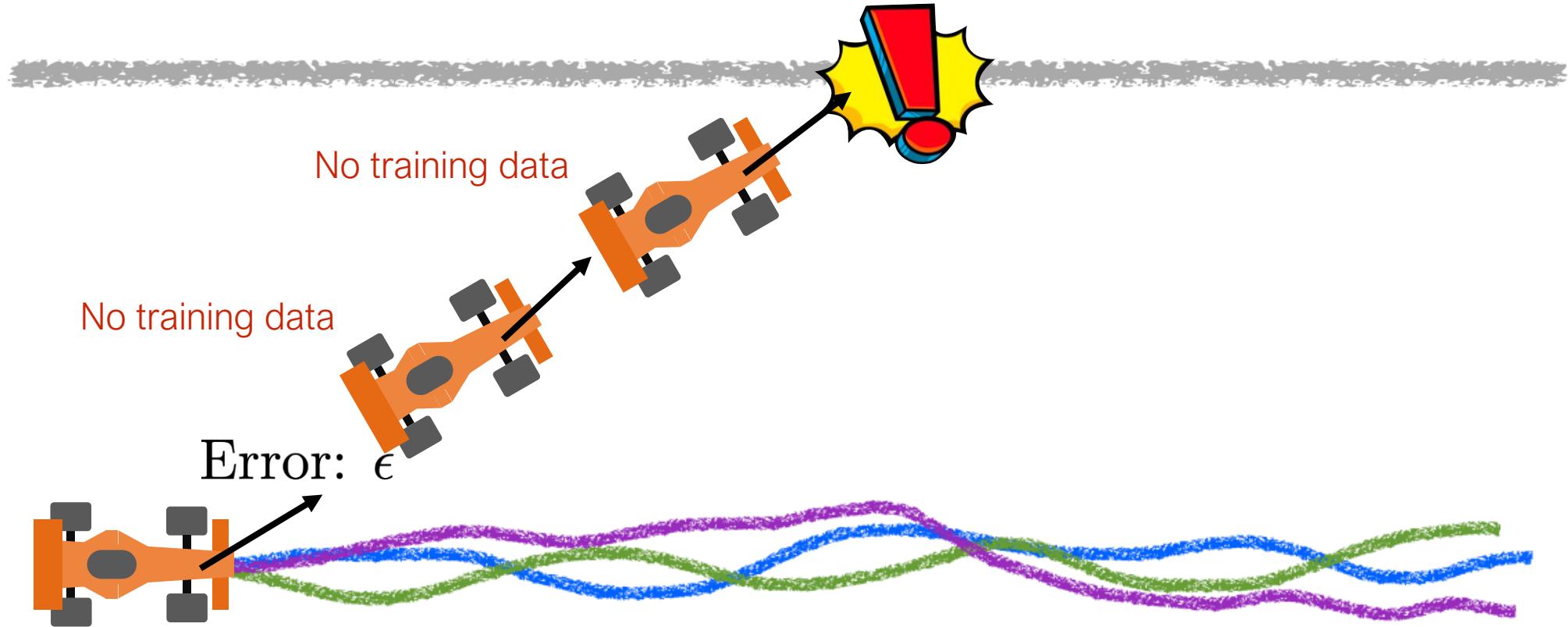


Behavior Cloning: Given a training dataset of (expert) behaviors $\mathcal{D} = \{(s_i, a_i)\}_{i=1}^N$, train the policy $\pi_\theta(a_t|s_t)$ to maximize the likelihood:

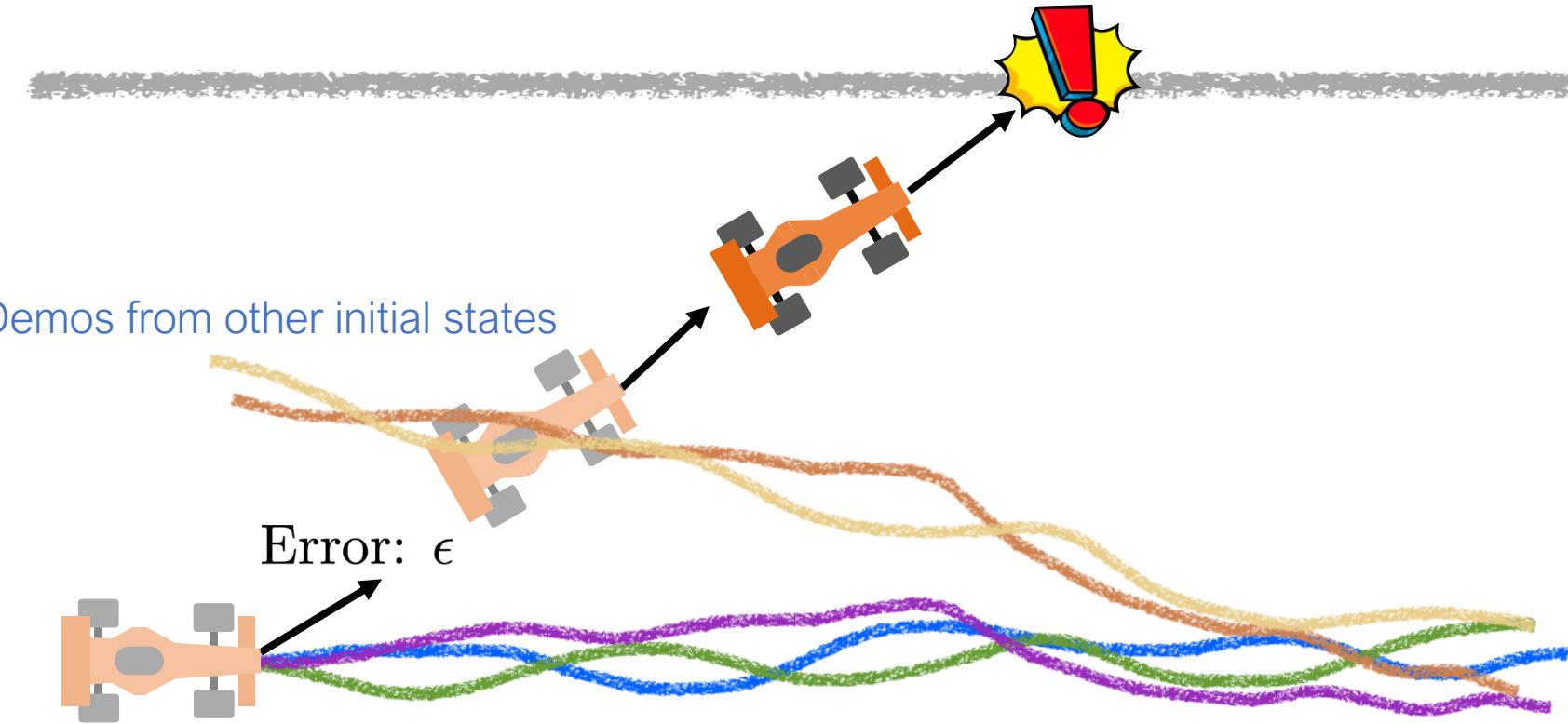
$$\theta^* = \arg \max_{\theta} \sum_D \log \pi_\theta(a_t|s_t)$$

- Classification loss
- Regression loss

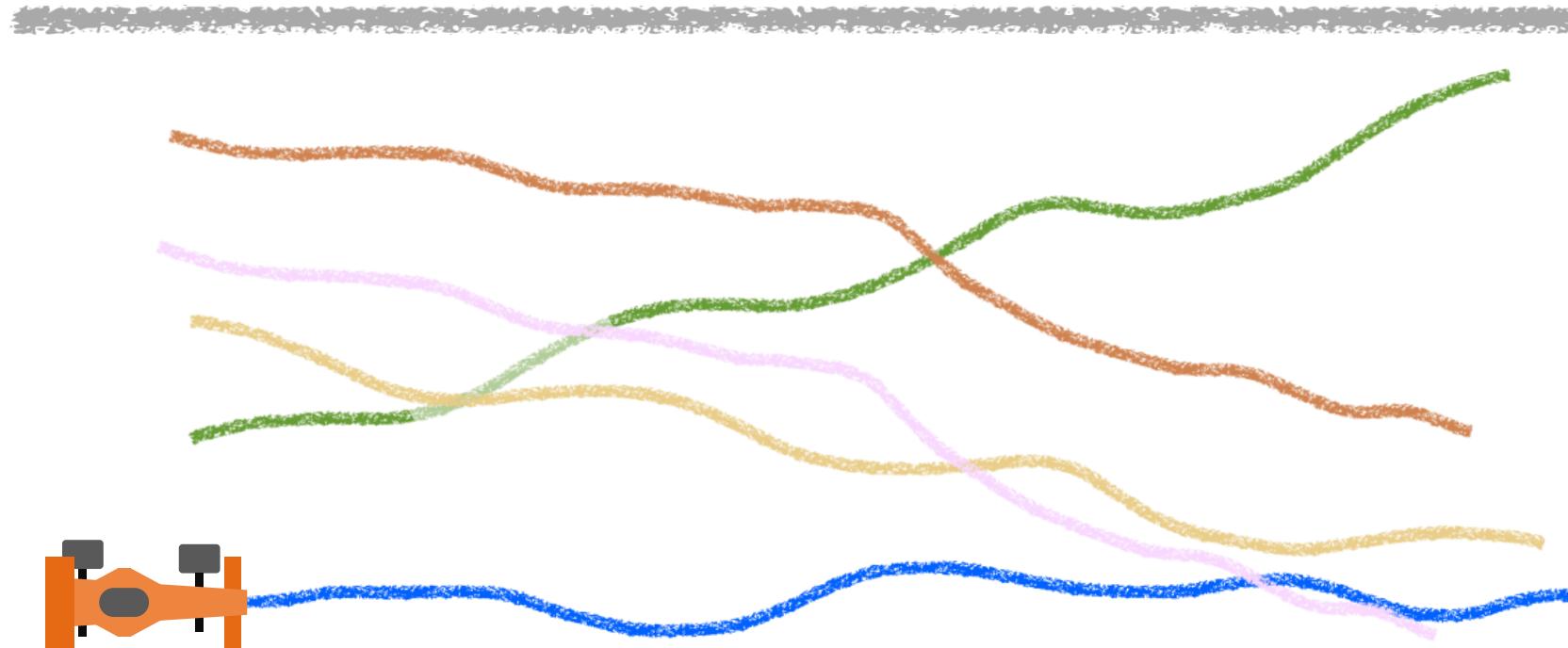
Limitation of Behavior Cloning



Collecting more demonstrations



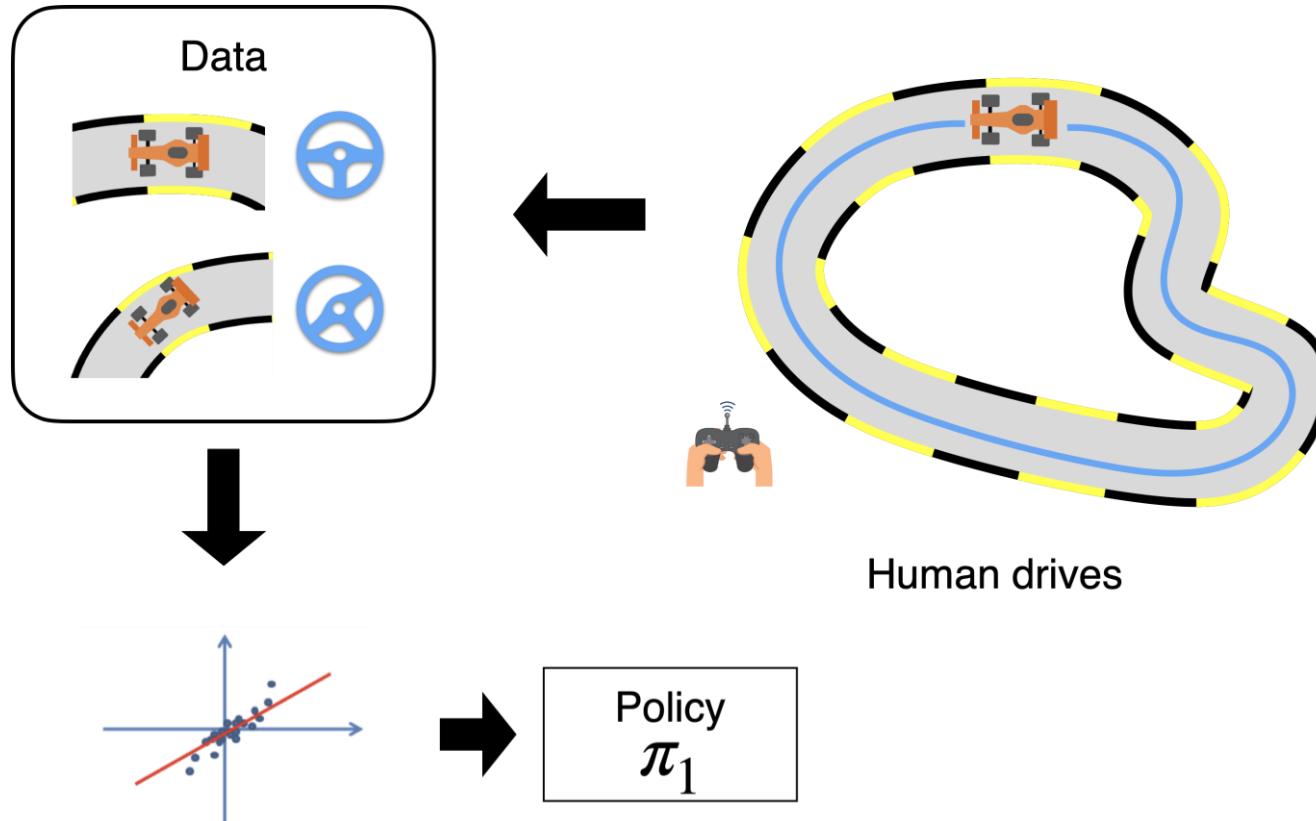
Collecting more demonstrations



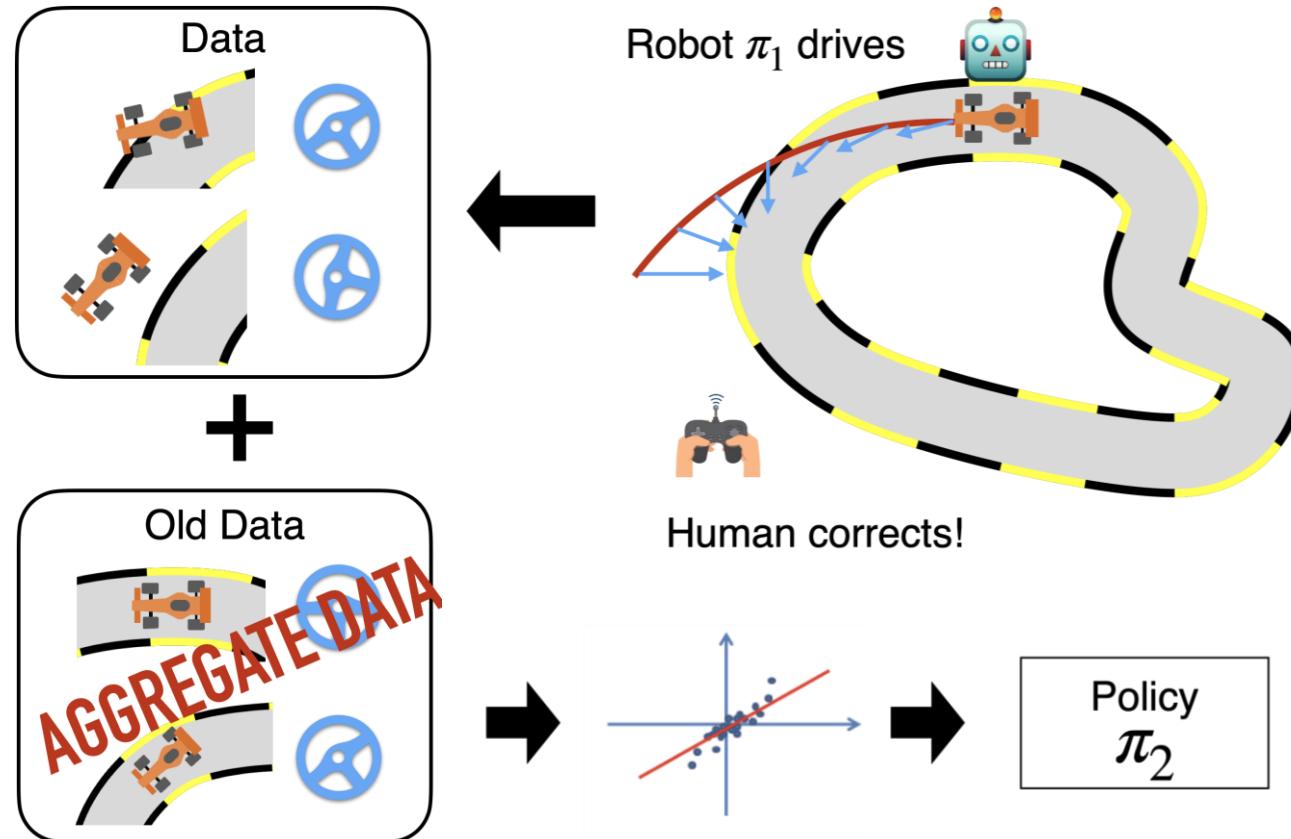
Dagger: Dataset Aggregation

- BC trains only on expert states, but during deployment the learner visits different states → compounding errors
- DAgger solves this by *actively collecting data on the learner's own state distribution* and getting expert labels on those states

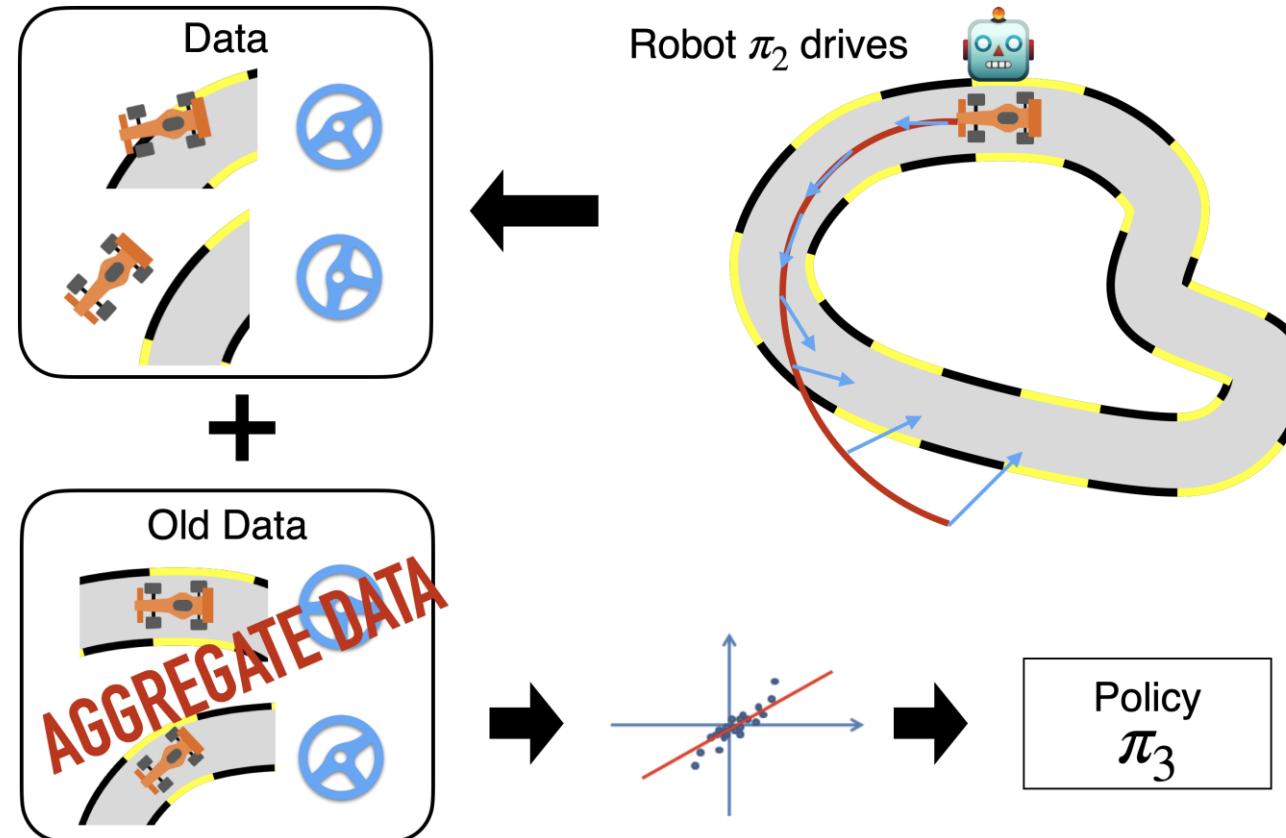
Dagger: Dataset Aggregation



Dagger: Dataset Aggregation

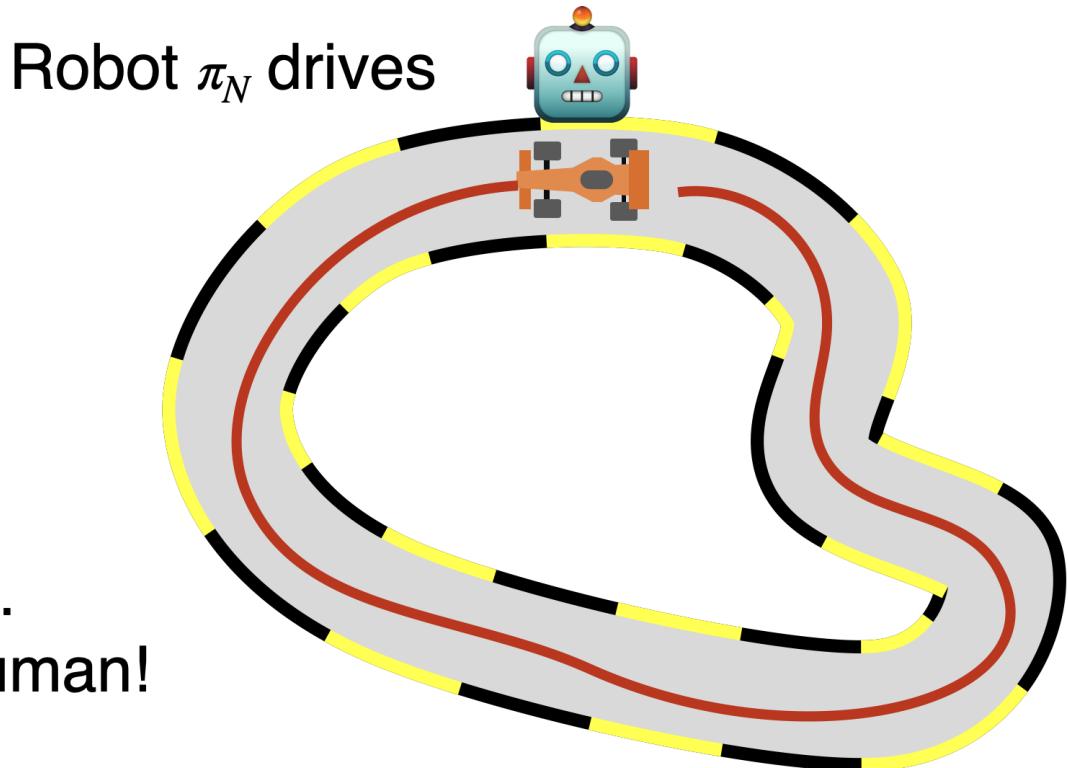


Dagger: Dataset Aggregation



Dagger: Dataset Aggregation

After many iterations
we are able to drive like a human!

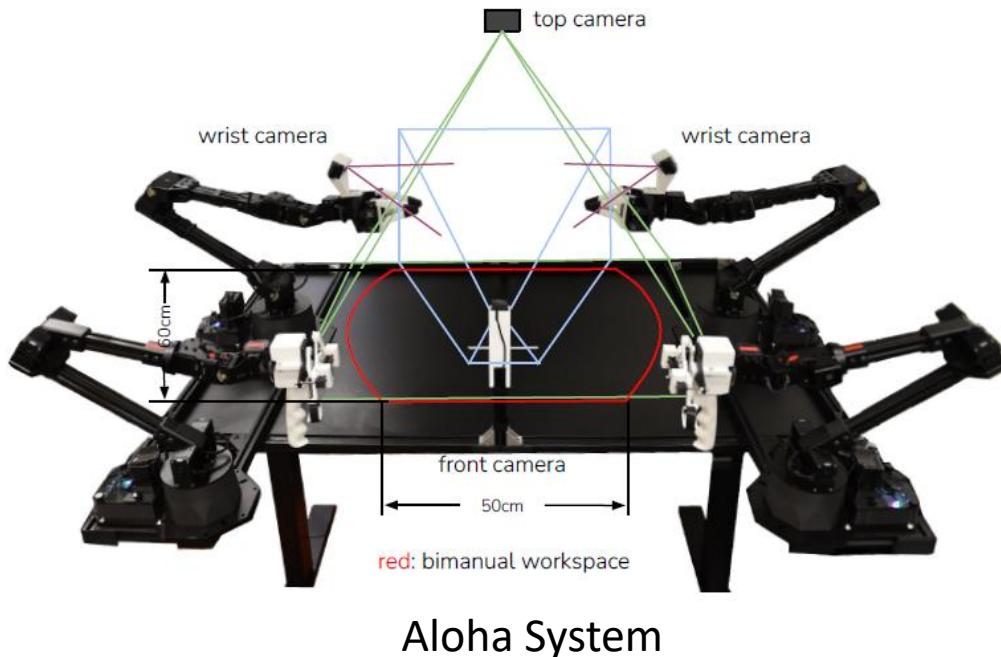


Dagger: Dataset Aggregation

```
Initialize with a random policy  $\pi_1$           # Can be BC
Initialize empty data buffer  $\mathcal{D} \leftarrow \{\}$ 
For  $i = 1, \dots, N$ 
    Execute policy  $\pi_i$  in the real world and collect data
         $\mathcal{D}_i = \{s_0, a_0, s_1, a_1, \dots\}$           # Also called a rollout
    Query the expert for the optimal action on learner states
         $\mathcal{D}_i = \{s_0, \pi^*(s_0), s_1, \pi^*(s_1), \dots\}$ 
    Aggregate data  $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_i$ 
    Train a new learner on this dataset           $\pi_{i+1} \leftarrow \text{Train}(\mathcal{D})$ 
    Select the best policy in  $\pi_{1:N+1}$ 
```

ACT: Action Chunking with Transformers

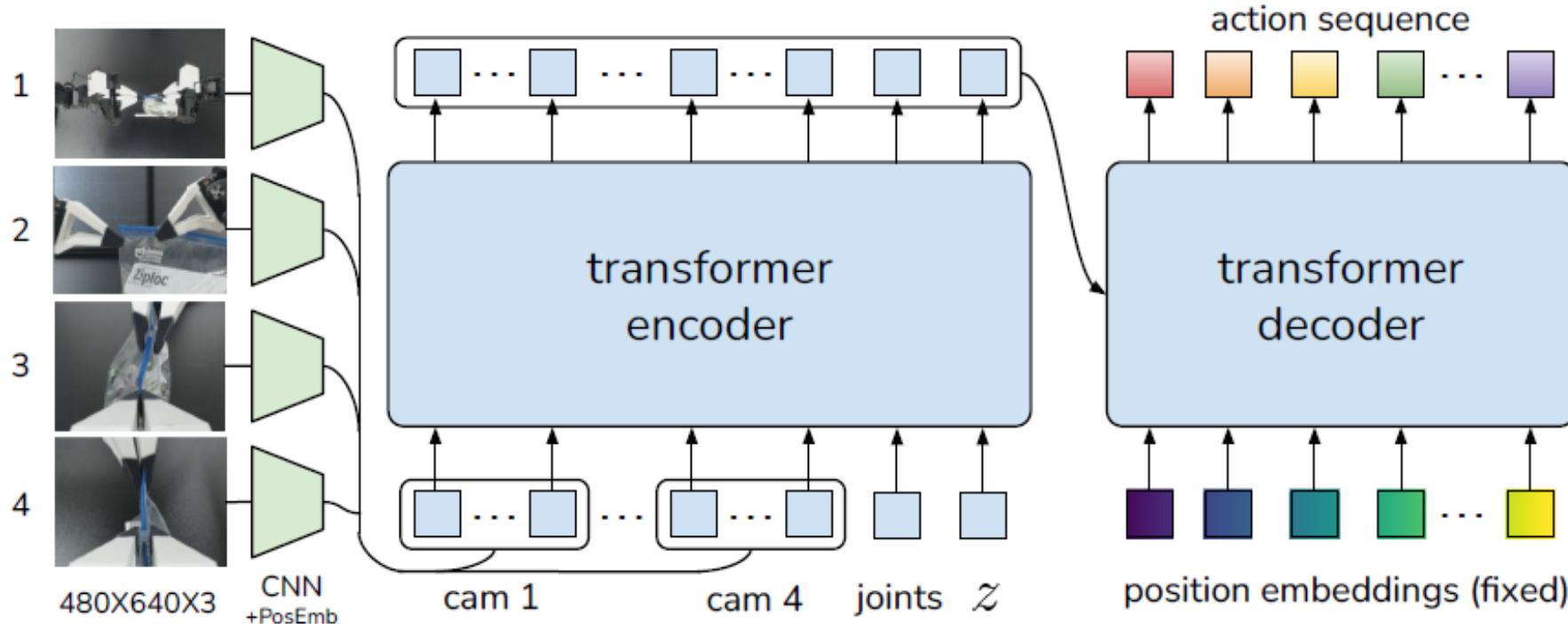
- ACT to predict the sequence of future actions given the current observations $\pi_{\theta}(a_{t:t+k}|s_t)$
 - mitigate compounding error, deal with non-Markovian or noisy demonstrations



<https://tonyzhaozh.github.io/aloha/>

ACT: Action Chunking with Transformers

- ACT to predict the sequence of future actions given the current observations $\pi_\theta(a_{t:t+k}|s_t)$



ACT: Action Chunking with Transformers

- 50 demonstration per task, chunk size 90

96%

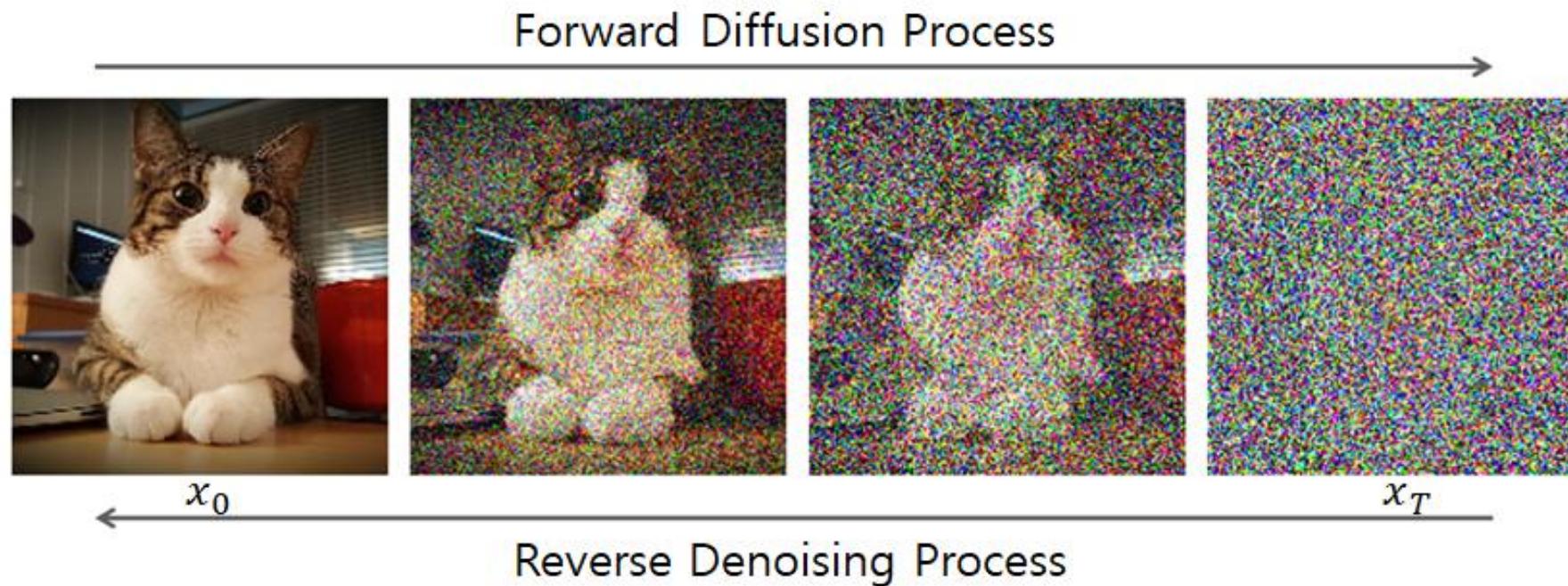
64%

84%

92%

Diffusion Policy

- Uses Denoising Diffusion Probabilistic Models (DDPMs) to generate actions



Denoising Diffusion Probabilistic Models (DDPMs)

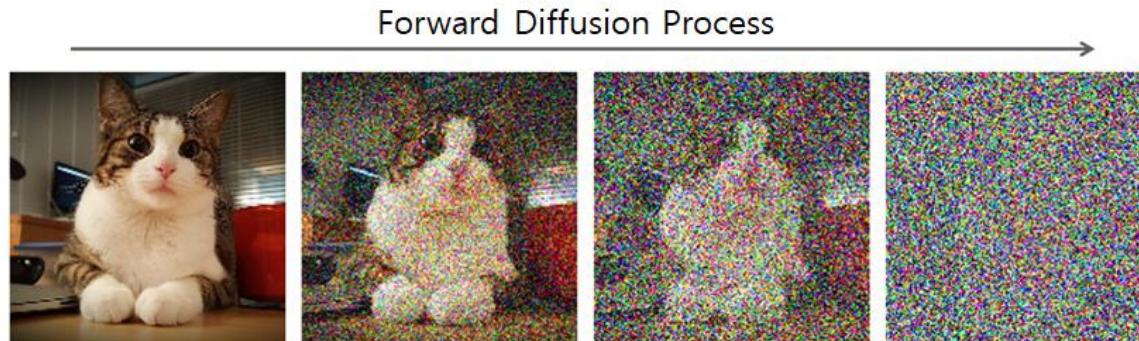
- **Forward process** (left → right): adds Gaussian noise step by step

$$x_0 \rightarrow x_1 \rightarrow \dots \rightarrow x_T \sim \mathcal{N}(0, I)$$

$$x_0 \sim q(x_0) \quad (\text{real data})$$

$$q(x_t \mid x_{t-1}) = \mathcal{N} \left(\sqrt{1 - \beta_t} x_{t-1}, \beta_t I \right)$$

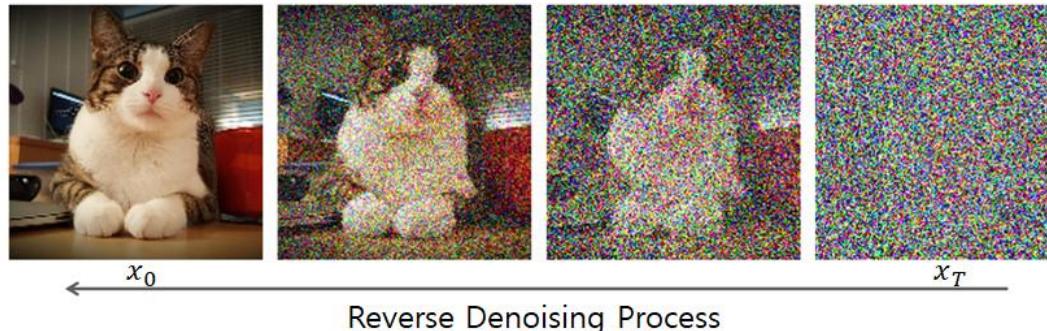
$$x_t = \sqrt{\alpha_t} x_0 + \sqrt{1 - \alpha_t} \epsilon, \quad \alpha_t = \prod_{i=1}^t (1 - \beta_i) \quad \beta_1, \beta_2, \dots, \beta_T \quad \text{Known and fixed}$$
$$\epsilon \sim \mathcal{N}(0, I)$$



Denoising Diffusion Probabilistic Models (DDPMs)

- **Reverse process (right → left):** learned denoising network predicts noise or x_{t-1}

$$x_T \rightarrow x_{T-1} \rightarrow \cdots \rightarrow x_0$$



$$x_t = \sqrt{\alpha_t} x_0 + \sqrt{1 - \alpha_t} \epsilon, \quad \epsilon \sim \mathcal{N}(0, I)$$

The reverse process uses a neural network **to predict that same noise:** $\epsilon_\theta(x_t, t) \approx \epsilon$

$$\hat{x}_0 = \frac{x_t - \sqrt{1 - \alpha_t} \epsilon_\theta(x_t, t)}{\sqrt{\alpha_t}}$$

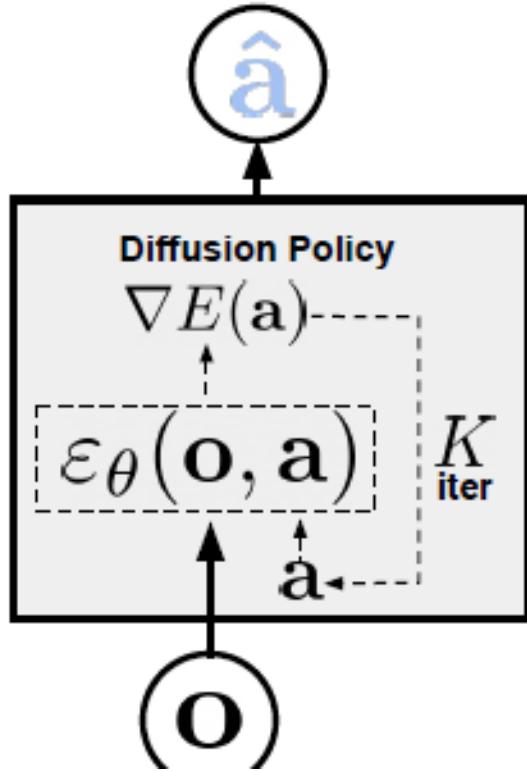
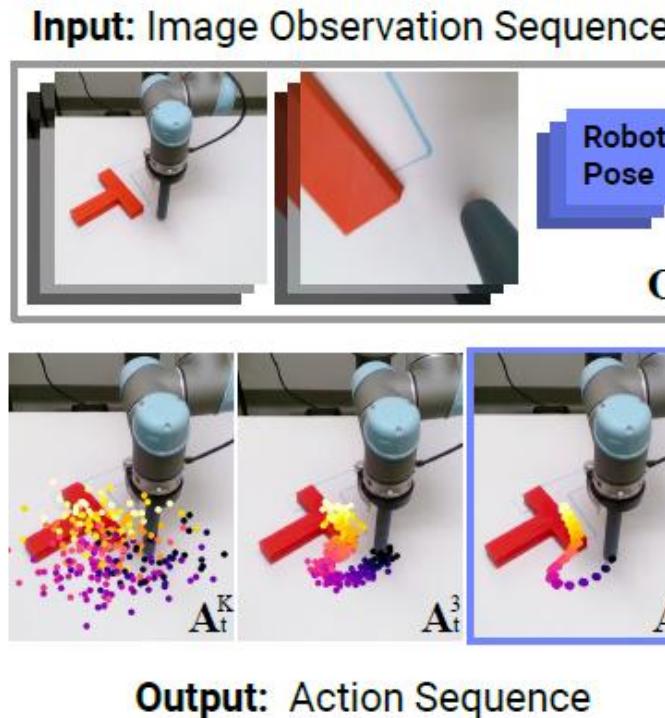
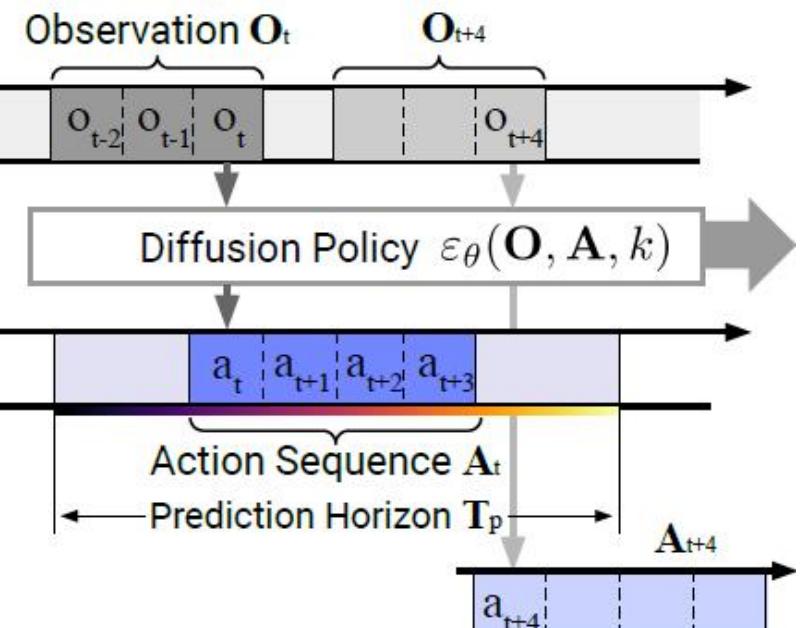
Training loss $\mathcal{L} = \mathbb{E}_{x_0, t, \epsilon} \left[\|\epsilon - \epsilon_\theta(x_t, t)\|^2 \right]$

- ϵ is known
- x_t is computed from x_0 and ϵ
- The model learns to recover the added noise

$$p_\theta(x_{t-1} \mid x_t) = \mathcal{N}(\mu_\theta(x_t, t), \Sigma_t)$$

$$\mu_\theta(x_t, t) = \frac{1}{\sqrt{1 - \beta_t}} \left(x_t - \frac{\beta_t}{\sqrt{1 - \alpha_t}} \epsilon_\theta(x_t, t) \right)$$

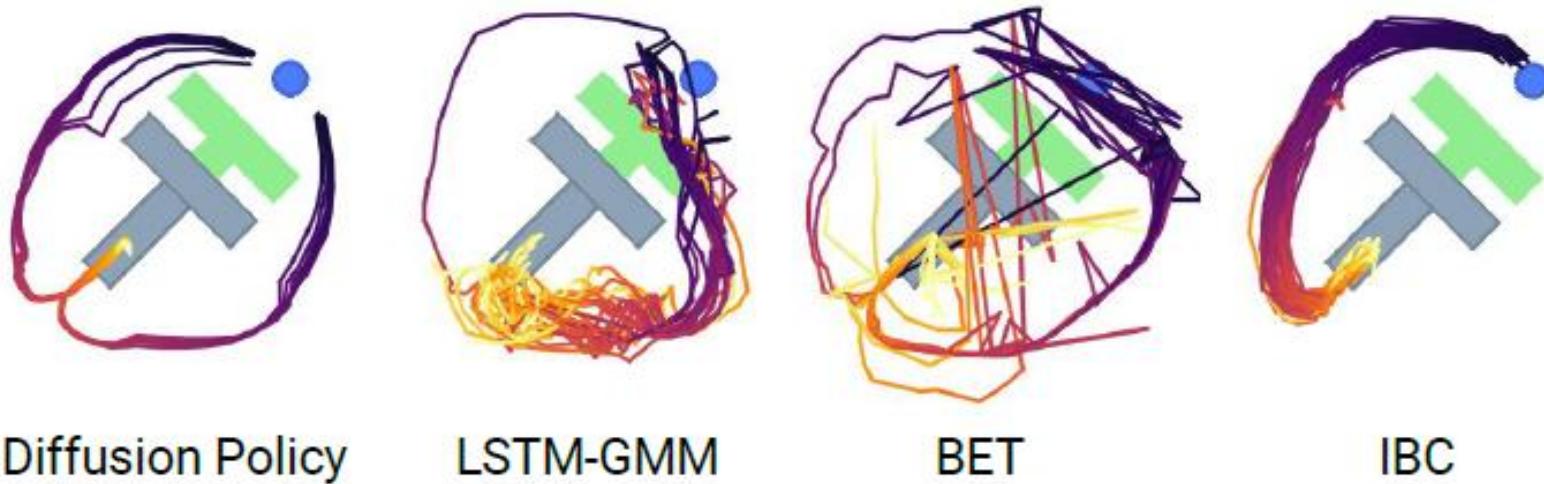
Diffusion Policy



a) Diffusion Policy General Formulation

Diffusion Policy

- Better modeling of multi-modal demonstrations
- Scalability to high-dimensional action spaces



Diffusion Policy

<https://diffusion-policy.cs.columbia.edu/>

Summary

- Imitation learning
 - Behavior cloning
 - Dagger
 - ACT
 - Diffusion policy

Further Reading

- Dagger: A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning <https://arxiv.org/abs/1011.0686>
- ACT: Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware <https://arxiv.org/abs/2304.13705>
- Diffusion Policy: Visuomotor Policy Learning via Action Diffusion <https://arxiv.org/abs/2303.04137v4>