Reinforcement Learning: Actor-Critic

CS 6341 Robotics

Professor Yu Xiang

The University of Texas at Dallas

Reinforcement Learning

>

Robot
>
State 8 t Reward 'rt Action a,t
¢ Environment <
St+1

Reinforcement Learning: a,t — W(St)

Imitation Learning:

Last Lecture: Policy Optimization

T
* Maximize expected return J(mp) = TEW [R(T)]) = ;”
J(mg) = /P(T|6’)R(T) P(710) = po(so) | [P(sts1lst, ar)mo(ay|s:)

* Policy gradient VeJ(ms) = E [Z Vo log mo(as|s:) R(7) Or+1 = O + a Vo J (mg)|g,

Tr~Tg

t=0

T T
Vod(mg) = E Z Vo log mg(az|s:) ; R(sy, ap, spi1] Vo (mg) = Twﬁe Z Vologmg(as|s:)A™ (s¢, ay)
reward-to-go Advantage A"(s,a) = Q" (s,a) — V7 (s)

Q-Learning

* Learn the optimal Q function ~ @*(s,a) = max E [R(7) |so = s, a0 = a

T~

* Policy from the Q function @’ (s) = argmax Q*(s,)

e How to learn the Q function?
* Bellman Equation Q*(S?{l) _ EEP [T(SF{I) 4 "}/m%XQ*(S:G;f)]
5~

a

Q-Learning

e For discrete states and actions

* Dynamic programming (Q-table) dN RN
* Initialize Q values arbitrarily Qy(s,a) =0 oo Lo o lelolelololo o]
° Then iterate 0 0 0 0 0 0 0 0 0 0 0 0

Qk+1(sa a) = T(Sa a') + 7y Z P(SI‘S, 03) max Qk:(S"; a.') https://mohitmayank.com/blog/interactiv
s “ e-g-learning

a*(s) = arg max Q" (s,a)

https://mohitmayank.com/blog/interactive-q-learning
https://mohitmayank.com/blog/interactive-q-learning
https://mohitmayank.com/blog/interactive-q-learning
https://mohitmayank.com/blog/interactive-q-learning
https://mohitmayank.com/blog/interactive-q-learning
https://mohitmayank.com/blog/interactive-q-learning
https://mohitmayank.com/blog/interactive-q-learning

Q-Learning Q*(s,0) = E_[r(s,0) + ymaxQ'(s,a)

s'~P

 What if the state and action space is large?
* We cannot store a table

* Use parameterization Q¢(5, a)
* Collect a set of transitions D = {(s;, a;, 7, s;)} Replay Buffer

+TDtarget y, = r; + ymaxQy (s},a)
* Loss function L(¢) = ;Z(Qé(sé,ai) — ;) ¢ ¢ — aVsL(¢p)

* Update the target network @ < @

Q-Learning

e TDtarget VYi =17+ ’YIH(?X Qo (si,a')

* How to compute this max?

* Discretize actions Q4 (s') = [Qu (5, a1), Qp- (5, a2), ..., Q4 (5, ax)]

Playing Atari with Deep Reinforcement Learning

Volodymyr Mnih Koray Kavukcuoglu David Silver Alex Graves loannis Antonoglou
Daan Wierstra Martin Riedmiller

DeepMind Technologies

Volodymyr Mnih et al., 2013 (arXiv preprint)

We now describe the exact architecture used for all seven Atari games. The input to the neural
network consists is an 84 x 84 x 4 image produced by ¢. The first hidden layer convolves 16 8 x 8
filters with stride 4 with the input image and applies a rectifier nonlinearity [10, 18]. The second
hidden layer convolves 32 4 x 4 filters with stride 2, again followed by a rectifier nonlinearity. The
final hidden layer is fully-connected and consists of 256 rectifier units. The output layer is a fully-
connected linear layer with a single output for each valid action. The number of valid actions varied
between 4 and 18 on the games we considered. We refef to convolutional networks trained with our
approach as Deep Q-Networks (DQN).

Q-Learning

e TDtarget VYi =17+ ’mex Qo (sa)

* How to compute this max?
* Discretize actions Q, (s') = | Qs (s, a1), Qp-(5',a2), ..., Qu (5, aK)]

e Continuous actions: actor-critic methods

o L li t
earn a policy (actor) 71-9(3’) ~ arg III{?JK Q(;S(S’j a’)

y=1+7Qs (s, m(s"))

Deep Deterministic Policy Gradient (DDPG)

* DDPG currently learns a Q-function and a policy
* Uses off-policy data and the Bellman equation to learn the Q-function
* Uses the Q-function to learn the policy

* Q-learning Q* (s, a) = Ep [T(S:a) +,}{quQ*(8f?a_f)]

s~

Approximator (Qs(s, a) Collect a set of transitions (S, a,7, s, d)
mean-squared | . ’
Bellmanerror L(¢,D) = E} Qy(s,a) — (?" + (1 —d) max Qs(s,a))
(MSBE) rard B ' .

apolicy u(s) ~ maxe Q(s,a) = Q(s, u(s)) ng(sla /J“(S,))

Deep Deterministic Policy Gradient (DDPG)

* Trick one: replay buffers
* Large enough to contain a wide range of experiences

* Trick two: target networks
* The term is called target 7+ (1 — d) max Qy(s’, a’)
* The target depends on the same param;iers ¢. but with a time delay
* Target network ¢iare

Qﬁtm'g A p‘;btarg + (1 o)O)Qﬁ
* Target policy network s, .,

Deep Deterministic Policy Gradient (DDPG)
e Q-learning in DDPG

s,a.r,s' ,d)~D

) .
L(¢,D) = (E (qu(ﬁj a) — (1 + (1 = d)Qprary (55 11600 (5))))

* Policy learning in DDPG

max B [Q(s, 1o(s))]

Gradient Ascent

Deep Deterministic Policy Gradient (DDPG)

Algorithm 1 Deep Deterministic Policy Gradient

1: Input: initial policy parameters #, Q-function parameters ¢, empty replay buffer D
2: Set target parameters equal to main parameters €y, < 0, Qrarg < @

3: repeat
4: Observe state s and select action a = clip(pg(s) + €, @row, @righ), where € ~ A
5: Execute a in the environment
6: Observe next state s’, reward r, and done signal d to indicate whether s’ is terminal
7. Store (s,a,r, s, d) in replay buffer D
8 If ¢’ is terminal, reset environment state.
9: if it’s time to update then
10: for however many updates do
11: Randomly sample a batch of transitions, B = {(s,a,r,s',d)} from D
12: Compute targets
y(r, s’ d) =71+ (1 = d)Qpuur (5", M1 (5'))
13: Update Q-function by one step of gradient descent using

1 2
Vor— o(s,a) —y(r. s, d
TE S (@il

s.a,r.s' d)eEB

14:

15:

16:
17:

Update policy by one step of gradient ascent using
1
V{gﬁ Z Qqﬁ(sa 1o(s))
seB

Update target networks with

¢targ — pq&targ + (1 - p)qﬁ
Htarg — pﬁtarg + (1 - p)ﬁ

end for

end if

18: until convergence

Twin Delayed DDPG (TD3)

* Trick one: clipped double-Q learning
 TD3 learns two Q functions Q-learning suffers from overestimation bias
* uses the smaller of the two Q-values to form the targets in the Bellman error

loss functions
y(?ﬂ? Sr? d) =T + 7(]‘ o d) TEI%I% Q‘i’i,targ('s;? aF(Sr))

* Trick two: “delayed” policy updates
» Updates the policy (and target networks) less frequently than the Q-function

* Trick three: target policy smoothing

* Adds noise to the target action, to make it harder for the policy to exploit Q-
function errors by smoothing out Q along changes in action

a'(s") = clip (o, (s") + clip(e, —¢, ¢), arow, asrign) , €~ N(0,0)

log mp(als) = log [Py(s)],

Soft Actor-Critic (SAC)

1

k
log my(als) = ~3 (Z ((aa—,u) + 210gcr) + klog 27r)

1=1

« An algorithm that optimizes a stochastic policy in an off-policy way
* Entropy-regularized RL

T T
t

m° = argmax E {i’}’t((st, at, se1) + aH (7 (|St)))}

. increasing entropy results in more exploration,
Ent = — . .
NHoRY H(P) :,.;Ep [log P(x]] which can accelerate learning later on

1~

Vi(s) = E [i”ﬁ (R(Staﬂta-ﬁm) +al (W('|5t)))

t=0

] V™(s) = E [Q"(s,a)] + aH (n(-|s))

-5'(1

o0 o0
Z V' R(st, ar, 5p41) + @ Z V' H (n(ls)
— t—1

SUSEGUCL]

'rw?r

Soft Actor-Critic (SAC)

* SAC learns a policy and two Q-functions

* Uses entropy regularization
* Train a stochastic policy

Q"(s,a) = E [R(s,a,s') +v(Q"(s',a) + aH (n(-[5)))]

= E [R(s,a,s")+~7(Q"(s',a’) — alogn(d'|s"))]

=

Approximate expectation with samples QF(S, a) =T+ (Qﬂ(sf} E!.f) — log ﬂ(&”S’)) \ a ~ ﬂ'(-‘sr)

Soft Actor-Critic (SAC)

* Q-learning

’-
L(g?f)” D) — E (Qﬂﬁa(sn Cl) - y(?",. Sf:n d))

(s,a,r,s".d)~D

y(r,s',d) =r+~(1 —d) (m}nz Qe (8,@) — alog ﬂg(&’\s")) o d@ ~ (]
j: 1

+ Policy learni
OliCy l€arning maximize V7(s) = E [Q"(s,a)] + aH (7(-]s))

The policy is learned by maximizing the soft value function

Soft Actor-Critic (SAC)

* Policy learning

reparameterization trick ay(s, &) = tanh (ug(s) + op(s) ©&), &~ N(0,1)

E Q™(s,a) — alogm(als)] = gE&f [Q™(s,a0(s,£)) — alogmp(as(s, §)|s)]

(~Tg

max B |min Qg,(s, (s, £)) — alogme(as(s, £)ls)
E~NE

Soft Actor-Critic (SAC)

13: Update Q-functions by one step of gradient descent using
Algorithm 1 Soft Actor-Critic |
1: Input: initial policy parameters ¢, Q-function parameters ¢, ¢o, empty replay buffer D V,;.i@ Z (Qo,(s,a) — y(r, s, d))? fori=1,2
2: Set target parameters equal to main parameters ¢rarg 1 <= 01, Grarg2 < P2 (s,a,r,8" d)EB
3: repeat . . _
. 14: Update policy b tep of gradient t
4: Observe state s and select action a ~ my(+|s) pdate policy by ohe step ol gradient ascent using

5: Execute a in the environment Vgi Z (min ORI e | s))
6: Observe next state s’, reward r, and done signal d to indicate whether s’ is terminal | B| 5 \i=l12 0N ’
7. Store (s,a,r, s, d) in replay buffer D
8: If ¢ is terminal, reset environment state. where ag(s) is a sample from mp(-|s) which is differentiable wrt 8 via the
9: if it’s time to update then reparametrization trick. ‘
10: for j in range(however many updates) do Lt Update target networks with
11: Randomly sample a batch of transitions, B = {(s,a,r,s’,d)} from D Brargi — Prargi + (1 — Py for i — 1.2
12: Compute targets for the Q functions: ’ ' ’
16: end for

y(r,s',d) = + (1 - d) (min Qiranes(s'5@) — alog rrs(aws')) @ ~m(ls) T endif
i=1,2 ' 18: until convergence

Learning Closed-Loop Control Polices for 6D Grasping

Segmentation

Point cloud

Image

State Action

St At |

"1 Policy

Deep Neural Network

Closed-Loop

Relative 3D Translation
and 3D Rotation

Goal-Auxiliary Actor-Critic for 6D Robotic Grasping with Point Clouds. Wang-Xiang-Yang-Mousavian-Fox, CoRL'21

GA-DDPG Network Architecture

3 512 actor goal prediction
1024 H
— : > —_—] —
(I o
goal
supervision
point cloud 9 l 512 —zz I
1024 FFH |]
— 5 —_— > > critic —>H r
([I — (|
tr[,atgilgﬂm 1 critic goal prediction

Q Value: 0.81

- PointNet++ Backbone
- Grasping Goals as Auxiliary Tasks
- 6D Ego-Transformation

Learning from Demonstration with the OMG-

Bd.809 pragertories
1,500 3D shapes

Goal-Auxiliary Actor-Critic for 6D Robotic Grasping with Point Clouds. Wang-Xiang-Yang-Mousavian-Fox, CoRL'21

Our Learned Policy in the Real World

Goal-Auxiliary Actor-Critic for 6D Robotic Grasping with Point Clouds. Wang-Xiang-Yang-Mousavian-Fox, CoRL'21

Closed-Loop Human-Robot Handover

Goal-Auxiliary Actor-Critic for 6D Robotic Grasping with Point Clouds. Wang-Xiang-Yang-Mousavian-Fox, CoRL'21

Summary

* Model-free RL
* Deep Deterministic Policy Gradient (DDPG)

* Twin Delayed DDPG (TD3)

e Soft Actor-Critic (SAC)

Further Reading

* OpenAl Spinning Up in Deep RL
https://spinningup.openai.com/en/latest/index.html

https://spinningup.openai.com/en/latest/index.html

	Slide 1: Reinforcement Learning: Actor-Critic
	Slide 2: Reinforcement Learning
	Slide 3: Last Lecture: Policy Optimization
	Slide 4: Q-Learning
	Slide 5: Q-Learning
	Slide 6: Q-Learning
	Slide 7: Q-Learning
	Slide 8: Q-Learning
	Slide 9: Deep Deterministic Policy Gradient (DDPG)
	Slide 10: Deep Deterministic Policy Gradient (DDPG)
	Slide 11: Deep Deterministic Policy Gradient (DDPG)
	Slide 12: Deep Deterministic Policy Gradient (DDPG)
	Slide 13: Twin Delayed DDPG (TD3)
	Slide 14: Soft Actor-Critic (SAC)
	Slide 15: Soft Actor-Critic (SAC)
	Slide 16: Soft Actor-Critic (SAC)
	Slide 17: Soft Actor-Critic (SAC)
	Slide 18: Soft Actor-Critic (SAC)
	Slide 19: Learning Closed-Loop Control Polices for 6D Grasping
	Slide 20: GA-DDPG Network Architecture
	Slide 21: Learning from Demonstration with the OMG-Planner
	Slide 22: Our Learned Policy in the Real World
	Slide 23: Closed-Loop Human-Robot Handover
	Slide 24: Summary
	Slide 25: Further Reading

