Reinforcement Learning: Policy
Optimization

CS 6341 Robotics

Professor Yu Xiang

The University of Texas at Dallas

Reinforcement Learning

>

Robot
>
State 8 t Reward 'rt Action a,t
¢ Environment <
St+1

Reinforcement Learning: a,t — W(St)

Imitation Learning:

The RL Problem

* The goal of RL is to select a policy which maximizes expected return
when the agent acts according to it

* Probability distribution over trajectories Transition model (no
TRl need in model-free RL)

P(T‘ﬂ) — PD(SU) H P(3t+1|3t; G»t)’i’r(ﬂ;t|8t) p(s' | s,a)

t=0 Sample trajectories

J(m) —/P(ﬂw)R(«r) = E [R(7)] R(ﬂ—én By = Yo'

T v €(0,1)
* The central optimization problem 7 = arg max J () Optimal policy

* Expected return

In practice * — are max J(ﬂ') Learn the parameters
P 6 — g 9 0 of the policy

Value Functions

* Value of a state or a state-action pair

* The expected return if you start in that state or state-action pair, and then act
according to a particular policy forever after

* On-policy Value Function 7o)y — E [R(7)|sy = s]

* On-policy Action-Value Function Q" (s,a) = TE}T R(7) [so = s,a0 = a

* Optimal Value Function Vi(s) = max E [R(1) |sg = 5]

* Optimal Action-Value Function (Q*(s,a) = max E [R(7)|so = s, a9 = a]

T~T

Value Functions

* Connection
Vi(s)= E [Q"(s,0)] V'(s) = maxQ'(s,a)

* The optimal policy in S will select whichever action maximizes the
expected return starting in S

a*(s) = arg max Q" (s, a)

Parametrized Value Functions
* On-policy Value Function V7(s) = E [R(7)|sg = s]
* Parameterization (a network) V¢>(S)

 Learning the value function
* Sample trajectories
* For each trajectory G, — Z,Yk—t,rk

1
* Supervised learning L(¢) = N Z (Vs(st) — Gt)2
t

Bellman Equations

* The value of your starting point is the reward you expect to get
from being there, plus the value of wherever you land next

Vi(s) = E [r(s,a) +7V7(s)],
On-policy ot
0= |

s'~P

a'~7

r(s,0)+7 E [Q7(5. a’n]

V*(s) =max E [r(s,a) +~V*(s')],

a g'~P

Q'(s,a) = E_[r(s,a) +ymaxQ'(s',)|

s'~P a

Optimal policy

Advantage Functions

* How much better it is to take a specific action a in state s, over
randomly selecting an action according to 7(:|s)

A" (s,a) = Q" (s,a) — V7™ (s)

/ N

Q value for (s, a) V value for s: random action from the policy

Q*(s.a) = E [R(r) |so = 5,00 = a]

V() = E [R()]so = s]

Markov Decision Processes (MDPs)

* AMDP is a 5-tuple (S, A, R, P, py)

o G is the set of all valid states,

o A is the set of all valid actions,

e R: S x Ax S — Risthereward function, with r; = R(St, i, SHl),

« P:S x A— P(S)is the transition probability function, with P(s'|s, a) being
the probability of transitioning into state ¢/ if you start in state s and take action a,

« and Po is the starting state distribution.

A Taxonomy of RL Algorithms

.
RL Algorithms J

Fa Y
Model-Free RL ‘ Model-Based RL
J “‘ S
) 4 v i v .
Lpolicy Optimization Q-Learning Learn the Model Given the Model
Policy Gradient < r) > DQN » World Models AlphaZero J
LN v DDPG { " 7 LS
A2C / A3C = ¢ > C51 > I12A
L - ; TD3 : L A
r ™ L ™
PPO < > QR-DOQN » MEMF
g > SAC <
i) L J (
TRPO < > HER > MBVE

Model-Free vs. Model-based RL

 Whether the agent has access to (or learns) a model of the
environment

* A model is a function which predicts state transitions and reward
e Transition model p(s' | s,a)
« Reward model 7(s,a)

* A model allows the agent to plan by thinking ahead

* A ground-truth model of the environment is usually not available to
the agent

Model-Free RL: Policy Gradient

* Maximize expected return J(mg) = TET [R(7)] R(t) =) m
. 6 t=0
 Gradient ascent Orit = O + 0 Vﬁf](’f‘fﬁ)bk
* How to compute the policy gradient? 'hcy aradient
VoJ(mp) = Vo E [R(7)]
’ Probability of a Trajectory
= VQ/P(TQ)R(T) T
T P(710) = po(s0) | | P(se+1lst, ar)ma(aslse)
_ / V,P(r|0) R(7) =

Policy Gradient

* The Log-Derivative Trick V,P(7|0) = P(7|0)Vylog P(7|0)

T
log P(7|0) = log po(sp) + Z (10g P(st11]|st, ar) + log ?Te(ﬂrtSt))

t=0

T
Volog P(rlf) = ulogprtsi] + 3 (Valog Pleccrfsian) + Volog m(ads)
t=0

T
L No need to know the
o Z V@ 1Og Wﬁ(at"gt)' transition model
t=0

Policy Gradient

VoJ(mg) = Vg E [R(T)]

T~Tg

= Vy] P(7|6)R(T) Expand expectation

= / VoP(7|0)R(T) Bring gradient under integral

= / P(1|0)Vglog P(7|0)R(T) Log-derivative trick

= E [Vylog P(7|0)R(7)] Return to expectation form
T~TY

T
VoJ(mg) = E Z Viylog mg(as|s;)R(T)| Expression for grad-log-prob

T~Tg
L t=0 |

Policy Gradient

* Collect a set of trajectories using the policy

D = {Ti}izl,...ﬂ

T
* Estimate policy gradient G = Z Z Vo log ma(ay|s:) R(7)
reD t=0

Categorical policy for discrete actions log ?Tg({l|8) — log [PEJ(S)]H

| o 1 Zk (@i — pi)?
Diagonal Gaussian policy log ﬂ'@(a|8) - —— (5 + 2 log 0’1‘) + k log 27
g

Policy Gradient

VoJ(m) = E | Y Vologmg(ais:)R(r)

T~Tg
| =0 =0

Agents should really only reinforce actions on the basis of their consequences.

T T
B Z Vg log mg(at|st) Z R(sy,ay, sy11)

o Tr~Tg
| t=0 t'=t 4

VoJ(mp)

T
Rt = E R(Stfj ag , 3t’+1) reward-to-go
t'=t

Vanilla Policy Gradient

» Key idea: push up the probabilities of actions that lead to higher
return, and push down probabilities of actions that lead to lower
return

* The expected finite-horizon undiscounted return of the policy J(m)

T
VoJ(mg) = E ZVglog?rg(aﬂst)Awﬂ(shat)

T~y
| 1=0

Advantage function A" (s,a) = Q" (s,a) — V" (s)

Stochastic gradient ascent 9k+1 = 0 + (IVQJ(?TQE)

Vanilla Policy Gradient

Algorithm 1 Vanilla Policy Gradient Algorithm
1: Input: initial policy parameters f, initial value function parameters ¢
2: for k=0,1,2,... do
3: Collect set of trajectories Dy = {7;} by running policy 7y = 7(fx) in the environment.
4
5}

Compute rewards-to-go R;.
Compute advantage estimates, A, (using any method of advantage estimation) based
on the current value function V;, .

6: Estimate policy gradient as

T
. 1 ~
g, = m Z Z Vg;l log Tﬁy(ﬂt‘St)lgk At*
kl reDy t=0
7. Compute policy update, either using standard gradient ascent,
Ok1 = O + argr,

or via another gradient ascent algorithm like Adam.
8: Fit value function by regression on mean-squared error:

|’Dl|T I (ADETIN

TEDy t=0

Gisr = argmin

typically via some gradient descent algorithm.

9: end for

Exploration vs. Exploitation
* stochastic policy

reward-to-go

T
Ry = Z R(sy,ay, sy+1)

t'=t

Advantage function
A" (s,a) = Q" (s,a) — V7™(s)

=r+V™(s) - V7T(s)

Bellman Equations

Trust Region Policy Optimization (TRPO)

taking the largest st ible
* TRPO update 01 = argmax L(60y, 6) taking the largest step possi
0 p performance

S.L. DI{L(HHQA) <9

* Surrogate advantage

mo(als) A measure of how the
al A (s, a) policy performs related to
the old policy

L0, 0) = E

v~ g, (als)

» KL-divergence

Dkr(0]|0r) = E [Dgr (mo(:|5)||ms,.(+]5))]

§~Tg,

Proximal Policy Optimization (PPO)

* PPO-clip updates 0j41 = argmax E [L(s,a,0y,0)]

g s.a~T
: i

L(s,a,f,0) = min (mo(als) A" (s,a), clip (molals) 1 —€, 1+ e) A% (s, a))

o, (als) o, (als)
Avoid stepping so far that we PPO methods are significantly simpler to implement, and
accidentally cause performance collapse empirically seem to perform at least as well as TRPO

* A simpler version

L(s, a, 0, 0) = min (?ff((it)) A™(s,a), g(e, A™ (s, a)))

(1+e)A A>0
9(6“4):{ (1-)A A<O.

Proximal Policy Optimization (PPO)

Algorithm 1 PPO-Clip

1: Input: initial policy parameters), initial value function parameters ¢y

2: for k=10,1,2.... do

3: Collect set of trajectories Dy, = {7;} by running policy 7 = 7(f;) in the environment.
Compute rewards-to-go R,.
Compute advantage estimates, fit (using any method of advantage estimation) based
on the current value function Vj, .
6: Update the policy by maximizing the PPO-Clip objective:

Tl |S
Ori1 = arg Max = |'Dk‘T Z Zml (o(as:) ———— A% (s, a;), g(e, A™% (si,tlg)))-,

7o, (ay|s
TEDy, 1=0 o (el s)

typically via stochastic gradient ascent with Adam.
7: Fit value function by regression on mean-squared error:

IDk|T 2 Z (Vito ~ B0)”

7D, =0

G4 = argmin

typically via some gradient descent algorithm.

8: end for

PPO Example

2x Speed @l — @ I

https://rewind-reward.github.io/

11/16/2025 Yu Xiang

22

https://rewind-reward.github.io/
https://rewind-reward.github.io/
https://rewind-reward.github.io/
https://rewind-reward.github.io/

Summary

* Model-free RL
 Vanilla Policy Gradient

* Trust Region Policy Optimization (TRPO)

* Proximal Policy Optimization (PPO)

Further Reading

* OpenAl Spinning Up in Deep RL
https://spinningup.openai.com/en/latest/index.html

https://spinningup.openai.com/en/latest/index.html

	Slide 1: Reinforcement Learning: Policy Optimization
	Slide 2: Reinforcement Learning
	Slide 3: The RL Problem
	Slide 4: Value Functions
	Slide 5: Value Functions
	Slide 6: Parametrized Value Functions
	Slide 7: Bellman Equations
	Slide 8: Advantage Functions
	Slide 9: Markov Decision Processes (MDPs)
	Slide 10: A Taxonomy of RL Algorithms
	Slide 11: Model-Free vs. Model-based RL
	Slide 12: Model-Free RL: Policy Gradient
	Slide 13: Policy Gradient
	Slide 14: Policy Gradient
	Slide 15: Policy Gradient
	Slide 16: Policy Gradient
	Slide 17: Vanilla Policy Gradient
	Slide 18: Vanilla Policy Gradient
	Slide 19: Trust Region Policy Optimization (TRPO)
	Slide 20: Proximal Policy Optimization (PPO)
	Slide 21: Proximal Policy Optimization (PPO)
	Slide 22: PPO Example
	Slide 23: Summary
	Slide 24: Further Reading

