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RL Examples

Control

https://spinningup.openai.com/en/latest/spinningup/rl intro.html
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RL Examples

Unitree RL GYM

@ English | cnFXX

This is a repository for reinforcement learning implementation based on Unitree robots, supporting Unitree Go2,
H1, H1_2, and G1.

Isaac Gym Mujoco Physical

https://github.com/unitreerobotics/unitree rl gym

Imitation learning & reinforcement learning



https://github.com/unitreerobotics/unitree_rl_gym
https://github.com/unitreerobotics/unitree_rl_gym

RL Examples
-
-~

J L\

https://cypypccpy.github.io/obj-dex.github.io/ https://playground.mujoco.org/
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RL Concepts

e State S : a complete description of the state of the world

* Observation (): partial description of a state
* Fully observed vs. partially observed
* For example: images

* Action space: the set of all valid actions in a given environment
* Discrete action space vs. continuous action space (],

* Policies: a policy is a rule used by an agent to decide what action to take
* Deterministic policy A+ — /L(St)
e Stochasti li
ochastic policy Ay ~ W("St)




RL Concepts

k dimensional action

* Parameterized policies  a; = pp(st) * Joint position
* Gripper pose
ar ~ ’ﬂ'g(*lb‘t) * Joint velocity, etc.

e Deterministic policy  pi_net = nn.Sequential(
nn.Linear(obs_dim, 64),
nn.Tanh(),
nn.Linear(64, 64),
nn.Tanh(),
nn.Linear (64, act_dim)

» Stochastic policy !

* Categorical policy for discrete actions log 71’3((1|3) = log [Pg(s)]ﬂ
 Diagonal Gaussian policy: mean action ﬂ&(S)

Log standard deviation log Jg(s) (—OO, OO)




RL Concepts

* Diagonal Gaussian policy
° Sampling a = MQ(S) — 0'9(3) ) 2 o~ j\,/'(O:r I) k dimensional action
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* Log-likelihood

i )2
log mp(als) = —% (Z ((aE 02'%) + 2 log O‘i) + klog 2’}1‘)




RL Concepts

* A Trajectory is a sequence of states and actions in the world
T = (801 ap, 51, a1, )
e Start-state distribution sy ~ py(-)

* State transitions are governed by natural laws of the environment
(dynamics)
* Deterministic St+1 = f(Sta @t)

e Stochastic St4+1 ~~ P(‘|St; flt)




RL Concepts

simplified

R(s, ay)

e Reward function r; = R(stj ag, St+1) Tt = R(St) Tt

* Finite-horizon undiscounted return for a trajectory
T

R(1) = Z T

=0
* Infinite-horizon discounted return for a trajectory

00

R(r) = Z’}’t?"t v € (0,1)

t=0




The RL Problem

* The goal of RL is to select a policy which maximizes expected return
when the agent acts according to it

* Probability distribution over trajectories
T-1

P(1|m) = po(sp) H P(spr1|se, ap)m(ag|st)

t=0

J(m) = /P(T|W)R(T) = E [R(7)] sample trajectories

T

* Expected return

* The central optimization problem 7 = arg max J () Optimal policy

In practice * — are max J(ﬂ' ) Learn the parameters
P 6 — g 9 0 of the policy




summary

* RL concepts




Further Reading

* OpenAl Spinning Up in Deep RL
https://spinningup.openai.com/en/latest/index.html
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