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Motion Planning

* Motion planning: finding a robot motion from a start state to a goal
state (A to B)
* Avoids obstacles
 Satisfies other constraints such as joint limits or torque limits




Example: cuRobo from NVIDIA

https://developer.nvidia.com/blog/cuda-accelerated-robot-motion-generation-in-milliseconds-with-curobo/
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Configuration Space

* The configuration of a robot arm with n joints
* njoint positions ¢ = (61,...,6,)

* Free C-space (Cg,.qo

* Configurations where the robot neither penetrates an obstacle nor violated a
joint limit

* Obstacles in C-space Cobs C = Cree U Cobs

* Joint limits are treated as obstacle in the configuration space




Configuration Space Obstacles

* A 2R planar arm

Configuration
space




Distance to Obstacles in Configuration Space

* Given a C-obstacle I3 and a configuration 4, the distance between a
robot and the obstacle

d(q,B) >0 (no contact with the obstacle),
d(q,B) =0 (contact),
d(q,B) <0 (penetration).

* A distance measurement algorithm determines d(q, B)

* A collision detection algorithm determines whether d(q,B;) < 0




Distance to Obstacles

* Approximation of 3D shapes using 3D spheres

* Robot: k spheres of radiusR,,; centered at 7i(q)
* Obstacle: | spheres of radius 5; centered at b;

* The distance between the robot and the
obstacle

d(q, B) = min [|ri(q) — b;l| — Ri — B;

L]

cuRobo




Robot State

* For first order dynamics, state is the configuration

State
Joint position

L = (

Control input: velocity

r = q

Velocity Control

* For second order dynamics, state is configuration and velocity

State

Control input

x:q T =
9.
ueld CR™

q

i

Force (acceleration)

Force/Torque Control




Equations of Motion

* The equations of motion of a robot

j::f(a:',u)
— \

Forward dynamics

Robot state Controlinputs ¢y € 4 C R™
First order dynamics Second order dynamics
=4 azzm j::m U=T
U = q q q flz,u) =
_ B For example . g
b= f(fL’, u) —u q=M"g)lr—Cla,d—g(@] *= [MI(Q) [U—C(q,d)d—g(Q)]]




Equations of Motion

* The equations of motion of a robot

jC:f(QZ,U)
— \

Robot state Controlinputs ¢y € 4 C R™

Forward dynamics

* Integral form

Numerical approximation

+(T) = 2(0) + /0 Fa@),u®)dt  zaes = o+ F@eug) At




Motion Planning

* Given an initial state CC(O) = Tstart and a desired final state Lgoal
find a time T and a set of control w : [0,7] — U such that the

motion
x(T) = / f(z

(1) = Tgoal

q(x(t)) € Ciree for all t € 0,T]

satisfies

Robot motion planning needs to find the control inputs




Path Planning vs. Motion Planning

* Path planning is a purely geometric problem of finding a collision-free
path

q(S), S € [07 1] Q(O) — (start Q(l) — {goal

* No concern about dynamics/control inputs




2D Path Planning

Dijkstra's Algorithm A* Search Algorithm

%

https://en.wikipedia.org/wiki/Dijkstra%27s algorithm https://en.wikipedia.org/wiki/A* search algorithm
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C-Space Path Planning: Grid Methods

* Discretize the configuration space into a grid +

* |f the C-space is n dimension, we use k grid points along
each dimension

* The C-space is represented by k’n grid points ; | E

8-connected

4-connected

* We can apply the A* search algorithm for path

planning with a C-space grid . e
G

@
Manhattan




C-Space Path Planning: Grid Methods

 A* grid-based path planner

Grid-based path planning is only suitable for low-dimensional C-space
Number of grid points k‘n




C-Space Path Planning: Sampling Methods

* Sampling methods

* Randomly or deterministically sampling the C-space or state-space to find the
motion plan

* Give up resolution-optimal solutions of a grid search, quickly find solutions in
high-dimensional state space

* Most sampling methods are probabilistically complete: the probability of
finding a solution, when one exists, approaches 100% as the number of
samples goes to infinity




Rapidly exploring Random Trees (RRTs)

Algorithm 10.3 RRT algorithm. kinematic problems

1: initialize search tree 1" with xgiart L = q
2: while 7' is less than the maximum tree size do
3¢  Tgamp < sample from &

* Line 3, uniform sampling with
a bias towards goal

4: Tnearest <— Nearest node in 71" to Tsamp
5:  employ a local planner to find a motion from Zearest t0 Tnew il * Line 4, Euclidean distance
the direction of Tgamp * Line 5, use a small distance d
6: if the motion is collision-free then from, check collision along
7 add Zuew to T with an edge from Prsazest 10 Lnew the line
8: if Tpew 1S in Xyoa1 then Tnearest ON the straight line to gamp
9: return SUCCESS and the motion to Zew
10: end if
11:  end if

12: end while
13: return FAILURE




Rapidly exploring Random Trees (RRTs)
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A tree generated by applying a
uniformly-distributed random
motion from a randomly chosen A tree generated by the RRT algorithm
tree node does not explore very far.




Rapidly exploring Random Trees (RRTs)

An animation of an RRT starting from iteration 0 to 10000
https://en.wikipedia.org/wiki/Rapidly-exploring random tree
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Summary

* Overview of motion planning

* Configuration space obstacle
e Distance to obstacles

* Robot state

* Equation of motion

* Path Planning
e Grid methods
e Sampling methods




Further Reading

* Chapter 10 in Kevin M. Lynch and Frank C. Park. Modern Robotics:
Mechanics, Planning, and Control. 1st Edition, 2017.
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