<A NVIDIA.

Perspectives on Designing Vi

Ankit Goyal

sion Language Action Models



The Evolving State of Robotics

Dyna Robotics

..........................
.....................
......................
..............................
................................
..........................
........................
...............................
...................................
...........................
.......................

s s & ¢ ol

-"'5‘..\‘ {
ooooooooo
-------

Google Robotics Figure Robotics Nvidia GROOT

[Courtesy: Physical Intelligence, TRI, Dyna, Google Robotics, Figure Robotics, NVIDIA GROOT] 2 <ANVIDIA. I



Background

LLMs

* Trained with large scale data and many other tricks!

* LLMs (Large Language Models) — They predict one token (similar to sub-word) at a time
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Background

We start with an LLM and then introduce image tokens to it
Image tokens come from a pre-trained Vision Encoder

Fine-tune the LLM on this joint task to create a VLM
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Background
Diffusion Model

* A class of generative model — i.e. they can be used to generate
* They are trained via adding progressive adding noise to a sample and then asking a network to denoise it

* During generation, we start with noise and progressively denoise it

The Forward Process
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What are Vision Language Action Models ?

LLMs power Language Understanding, VLMs bridge Vision and Language — VLAs extend this to Actions
VLAs build on pretrained VLMs — Adapting them to reason about Actions

VLASs in the existing literature can be classified into three categories
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l. Discrete Token VLAS

E.g. OpenVLA

* Replace or modify the vocabulary to introduce Discrete Action Tokens

* Limited Action Resolution

+ Compromised pretrained language representations
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[Kim et al: CoRL 2024]
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ll. Generative Head VLAs Yy
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VIiT
* VLM predicts latent vector, fed into a Generative Head (Diffusion/Flow Match.) to predict actions
* Non-pretrained components reduce model generalization Generative Head VLA (eg. Pi-0)

* Compromised pretrained language representations
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Not in the above two general categories

» Significant architectural changes

» Specialized Training Pipelines

lll. Custom VLA Designs

Fg. OpenVLA-OFT
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Family of VLAS

Hierarchical design instead of monolithic design

Leverage VLMs for generalization and specialized policies (3D) for action prediction
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HAMSTER: Hierarchical Action Models For Open-World Robot Manipulation

ICLR 2025
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The HAMSTER VLM predicts points to denote
the 2D paths



Hamster VLA Training Data

High-Level model is trained on a variety of data sources (Sim, Real, Point-QA)

Pixel Point Prediction
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Instr.
Z

Image
img

Paths
ans

Skills

Datasets

Hamster VLA Training Data

High-Level model is trained on a variety of data sources (Sim, Real, Point-QA)

VQA

What is the person feeding
the cat?

The person is feeding an apple
to the cat.

Semantic Reasoning

VQA

14 <ANVIDIA I



Instr.
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img

Paths
ans
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Hamster VLA Training Data

High-Level model is trained on a variety of data sources (Sim, Real, Point-QA)

Simulated Robot

Screw in the green light
bulb

-

...........
S ea -~

[(0.4, 0.6, close), (0.4, 0.6,
close), (0.8, 0.7, open)]

Visual diversity
Data-scarce tasks

RLBench
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Hamster VLA Training Data

High-Level model is trained on a variety of data sources (Sim, Real, Point-QA)

Off Domain Robot

Cover the bowl with the Put the marker inside
the silver pot

[(0.2, 0.2, close), (0.3, [(0.7, 0.5, close), (0.5,
0.2, close), (0.1, 0.2, 0.6, close), (0.6, 0.7,
close), (0.1, 0.3, open)] close), (0.7, 0.6, open)]

Grounding to real robot prediction

10k A5k

BridgeDatav2 DROID
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Hamster VLA Results

Robust To Novel Camera Position

v . 2 -
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Instruction: Pick up the M&M chocolate and put it in the yellow mug
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Hamster VLA Results

Sim to Real to Sketch

.

Instruction: Screw in the light bulb
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Hamster Results

Outperforms OpenVLA as well as 3D Policies
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Failure Analysis

Low-Level Policy Struggles

slelk up he pesky ond pub & in e pon slek up e deght objest @nd pub & in Hhe lof dowl
VLM Failure Fail to Follow Trajectory Action Failure
Success
VLM Failure

Fail to Follow Trajectory
Action Failure

¢

HAMSTER with RVT-2 HAMSTER with 3D-DA
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Hierarchical VLAs: Concurrent Works
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3D Policies

Specialized and Efficient
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* Take in Scene depth and / or camera calibration

* Specialized policies — Require very few demonstrations
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RVT: Robotic View Transformer for 3D Object Manipulation
CoRL 2023

Ankit Goyal Jie XU Yijie Guo Valts Blukis Yu-Wei Chao Dieter Fox
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Robotic View Transformer
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Success: Put orange bottle in top drawer Success: Press sanitizer « JSuccess: Put yellow block in bottom shelf

o P
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Lo/
Failure: Put blue marker in top drawer Failure: Press sanitizer X Failure: Put yellow blocK'in top shelf - | Success: Put yellow block on blue block

A single model achieves 90% success across tasks with just ~10 demos each.
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RVT: Robotic View Transformer for 3D Manipulation

Pipeline lllustration

ripper Rotation
o IRINTAAT T and State

.
. .
.
* o* * **
. . *
. L'y * *
. . ‘Q ‘0
* * *
*

~Multiflé modes ripper Location

* *

Instructions

“Stack the teal blocks”

le modes

Predicted 3D
Heatmap

Reconstructed
Input RGB-D Point Cloud
Images

Virtual redicted 2D
Images Heatmap
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RVT: Robotic View Transformer for 3D Manipulation

Pipeline lllustration

Instructions

“Stack the teal blocks”
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RVT: Robotic View Transformer for 3D Manipulation

Pipeline lllustration

Gripper Rotation
and State

Gripper Location

Instructions

“Stack the teal blocks”

e

Scene Predicted 3D

Heatmap

Input RGB-D
Images

Virtual Predicted 2D
Images Heatmap
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RVT: Robotic View Transformer for 3D Manipulation

Pipeline lllustration

Gripper Rotation
and State

Instructions

Gripper Location

“Stack the teal blocks”

Predicted 3D

Heatmap
Input RGB-D

Images

Virtual Predicted 2D
Images Heatmap

<ANVIDIA. I



RVT: Robotic View Transformer for 3D Manipulation

Pipeline lllustration
Gripper Rotation

and State
Gripper Location

Instructions

“Stack the teal blocks”

Predicted 3D

Heatmap
Input RGB-D

Images

Virtual Predicted 2D
Images Heatmap
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RVT-2: Learning Precise Manipulation from Few Examples

Point Cloud
Reconstruction

Zoomed-in Point
Cloud

RSS 2024

Virtual Cameras Predicted
RGB+XYZ+Depth Heatmaps Lifting to 3D

Multi-View
Transformer
Coarse

¥

»

Coarse Branch

Multi-View
Transformer
Fine

$

5 N

Virtual Cameras

RGB+XYZ+Depth Fine Branch

Multiscale design allows for precise manipulation with just 10 demos
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Family of VLAs

* How about the simplest variant?

* Predict Action as Text — No modification
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VLA-O: Building State-of-the-Art VLAs with Zero Modification
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VLA-0

No Modification to the VLM

VLA with no modification to the VLM
Predict Action as Text
No change to tokenization

No new architectural component

Training recipe is important - Check the paper for details
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VLA-0

Results on Libero

* #1 among all non-pretrained architectures — Outperforming Pi-FAST, Pi-0.5-Kl, SmolVLA, OpenVLA-OFT

Even more surprising:

* Without any action pretraining, outperforms leading pretrained models like Pi-0, Pi-0.5-K, GROOT-N1, MomImoAct

LIBERO: Models Without Large-Scale Action Pretraining
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VLA-0

Output Action: 4 12 98 300135 1232300240 132 34 13 0... |
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VLA-0
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Analyze the input image and predict
robot actions for the next H
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VLA-0
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VLA-0

Output Action: 4 12 98 300135123 2300240 132 34 13 0...

Vision Language Model

38 <A NVIDIA I



00
o

AN
o

Success Rate (%)
N (@)
o o

o

Place banana
on plate

(

|

Place cupcake
in bowl

VLA-0

Results in Real

1 SmolVLA [16]
Act. Pre-train v

SimpleVLA [Ours]
I Act. Pre-train X

Push apple Reorient Average
to block block

* On real world data, outperforms SmolVLA

* SmolVLA — Pretrained on large-scale SO-100 data
+ Finetuned on 100 demos per task

* VLA-O trained from scratch with 100 demos per task
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VLA-0: Building State-of-the-Art VLAs with Zero Modification

Ankit Goyal, Hugo Hadfield, Xuning Yang, Valts Blukis, Fabio Ramos
NVIDIA

Abstract— Vision-Language-Action models (VLAs) hold im-
mense promise for enabling generalist robot manipulation.
However, the best way to build them remains an open question.
Current approaches often add complexity, such as modifying
the existing vocabulary of a Vision-Language Model (VLM)
with action tokens or introducing special action heads. Curi-
ously, the simplest strategy of representing actions directly as
text has remained largely unexplored. This work introduces
VLA-0 to investigate this idea. We find that VLA-0 is not only
effective; it is surprisingly powerful. With the right design,
VLA-0 outperforms more involved models. On LIBERO, a
popular benchmark for evaluating VLAs, VLA-0 outperforms
all existing methods trained on the same robotic data, including
m0.5-KI, OpenVLA-OFT and SmolVLA. Furthermore, without
large-scale robotics-specific training, it outperforms methods
trained on large-scale robotic data, like 7(.5-KI, 7o, GRO0OT-
N1 and MolmoAct. These findings also translate to the real
world, where VLA-0 outperforms SmolVLA, a VLA model
pre-trained on large-scale real data. This paper summarizes
our unexpected findings and spells out the specific techniques
required to unlock the high performance of this simple yet
potent VLA design. Visual results, code, and trained models
are provided at: https://vla0.github.io/.

I. INTRODUCTION

Following the success of Large Language Models (LLMs)
in text processing and Vision-Language Models (VLMs)
in handling both visual and textual inputs, a natural next
step is to explore Vision-Language-Action models (VLAS),
i.e. systems that not only understand visual and textual
information, but also predict actions for robotic agents. VLAs
are typically built by modifying a base VLM to predict
actions. However, it is still unclear what the ‘correct’ way
to do this 1s, if there is one at all. Recent research has taken
various approaches, which we broadly categorize into three
families, as shown in Figure 2: (1) Discrete Token VLAs, (2)
Generative Action Head VLAs, and (3) Custom Architecture
VLAs.

Discrete Token VLAs. It is one of the initial strategies
popularized by models such as RT-2 [24] and OpenVLA [11].
Robot actions, originally continuous, are discretized into
bins; each bin is then assigned a token from the VLM
vocabulary, using either new or infrequent tokens. The model
is then trained to predict these action tokens using the same
cross-entropy loss as used to train the base VLM. Although
straightforward, this approach has two main limitations: (i)
it restricts the resolution of the action space, since fine-
grained control can require thousands of bins, which conflicts
with sharing the text vocabulary; and (ii) it compromises
the pretrained language understanding of the VLM by repur-
posing its vocabulary for actions. Given these limitations,

such VLAs do not perform as well as other alternatives. (see
Tab. I)

Generative Action Head VLAs. Another common strategy
is to attach an action generation head on top of the VLM, as
done by methods like 7y [2] or SmolVLA [19]. The VLM is
fine-tuned to predict a latent vector, which is then decoded
into actions using a generative model such as a diffusion
process or flow matching. While this method improves action
fidelity, it also introduces a new neural network that needs
to be finetuned. This often leads to a decline in the language
understanding and grounding capabilities of the underlying
VLM [9], and introducing a non-pretrained action head may
compromise generalization of the overall system.

Custom Architecture VLAs. Beyond the above categories,
some methods propose architectural modifications or cus-
tom tokenizers tailored to action prediction. For instance,
OpenVLA-OFT [10] introduces a specialized ACT head.
Another example is m-FAST [16] that create a special tok-
enization scheme for actions using discrete cosine transform
(DCT). w-FAST can also be considered a discrete token
VLA, but for the purposes of this work, we classify them as
custom VLA as it involves a custom tokenization scheme.
While these custom methods are effective, they typically
involve significant architectural changes, additional param-

L

Place f:l}e cupcake in the bowl

T

VLA-O

41298300135123230024013234130
Action (Text)

Fig. 1: Schematic representation of VLA-0. VLA-O con-
verts a VLM into a VLA by prompting the VLM to predict
action as text. This strategy is surprisingly effective and
achieves state-of-the-art results akin to alternatives.

VLA-0

SCAN ME
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Summary
Thank you! Questions?

* Hierarchical VLAs — Combine the strength of VLMs and 3D Policies
* 3D Policies — Efficient task specific learners

* Among monolithic VLAs — Simplest design (VLA-0) is surprisingly effective
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