<A NVIDIA.

Perspectives on Designing Vi

Ankit Goyal

sion Language Action Models

The Evolving State of Robotics

Dyna Robotics

..........................
.....................
......................
..............................
................................
..........................
........................
...............................
...................................
...........................
.......................

s s & ¢ ol

-"'5‘..\‘ {
ooooooooo

Google Robotics Figure Robotics Nvidia GROOT

[Courtesy: Physical Intelligence, TRI, Dyna, Google Robotics, Figure Robotics, NVIDIA GROOT] 2 <ANVIDIA. I

Background

LLMs

* Trained with large scale data and many other tricks!

* LLMs (Large Language Models) — They predict one token (similar to sub-word) at a time

Time Step #1 Time Step #2 Time Step #3
sat down <EOS>
g) 4) 4
Decoder-Only Decoder-Only Decoder-Only
Architecture Architecture Architecture
.) .) _
A A A A A A A A A
the dog e . . the dog sat . .. the dog sat down
| Final Generated Output |
I |
E the dog sat down <EOS> ﬁ

3 <A NVIDIA. I

Background

We start with an LLM and then introduce image tokens to it
Image tokens come from a pre-trained Vision Encoder

Fine-tune the LLM on this joint task to create a VLM

Text Output

T

Large Language Model

Image Tokens T Text Tokens

|

Projector

|

Vision Encoder

|

Image Input Text Prompt

4 NVIDIA

Background
Diffusion Model

* A class of generative model — i.e. they can be used to generate
* They are trained via adding progressive adding noise to a sample and then asking a network to denoise it

* During generation, we start with noise and progressively denoise it

The Forward Process

Xog —7 L1 —72 *°° —72 LT

Original
Data

! :' 2l Complete
Noise

Lo L] <+ <— LT

The Generative Backward Process

5 <A NVIDIA. I

What are Vision Language Action Models ?

LLMs power Language Understanding, VLMs bridge Vision and Language — VLAs extend this to Actions
VLAs build on pretrained VLMs — Adapting them to reason about Actions

VLASs in the existing literature can be classified into three categories

[& & & &

s v v s &

Action Detok.

b bbb b bbbk
{ VLM } { VLM } { Action Expert J { VLM — Parallel Decoding }
[ViTl {ViT} [vn}
FILM
Discrete Token VLA (eg. OpenVLA) Generative Head VLA (eg. Pi-0) Custom VLA (eg. OpenVLA-OFT)
=5 Text Tokens Image Tokens Empty / Query Tokens s Robot Actions Action Tokens

NVIDIA

l. Discrete Token VLAS

E.g. OpenVLA

* Replace or modify the vocabulary to introduce Discrete Action Tokens

* Limited Action Resolution

+ Compromised pretrained language representations

Input Image

“Put eggplant
In bowl”

Language Instruction

[Action De-Tokenizer j
t 1

@ o @
Llama 2 7B

bt 4

t ? "1 ?, ? ¢

@ MLP Projector] [Llama Tokenizer J
®Din§>V2 [Sig?LIP J I

» “What should the robot do to {task}? A:”

[Kim et al: CoRL 2024]

'

AXx
A6
AGrip.

7D Robot
Action

'

b b b >
Action Detok.

VLM J

)

ViT

Discrete Token VLA (eq. OpenVLA)

7 <A NVIDIA I

|
ll. Generative Head VLAs Yy
s s s i» s
Eg P|'O [VLM M Action Expert J

VIiT
* VLM predicts latent vector, fed into a Generative Head (Diffusion/Flow Match.) to predict actions
* Non-pretrained components reduce model generalization Generative Head VLA (eg. Pi-0)

* Compromised pretrained language representations

.
ﬁ

. tot o4t
T dataset ; : ; : ; : ; : 14 DoF
9 o 2] () | (i, Bimanual
§1ég®¢ (oo |[looo|looollocooo]| (ol [cacd e ore
/ a
'? % N pre-trained VLM action expert
‘ . SigLIP (466M) + Gemma (2.6B))l (306M) 18 DoF
T — 4 4+ x| 4 Mobile
In:ernet L() C)JL(AR)Jt() (I«)JL() (I)J S G Manipulators
pre-training . TR
'@ “fold shirt” T e—
&7 _h q T 7 and 8 DoF
Qe noise Single Arm
iy Manipulators
—
[Black et al.] 8 <ANVIDIA I

Not in the above two general categories

» Significant architectural changes

» Specialized Training Pipelines

lll. Custom VLA Designs

Fg. OpenVLA-OFT

3rd-person left wrist right wrist
| camera camera camera

angies)

l— action chunk (25 timesteps) =———— h
(flmgnﬁﬁ?ﬁuﬂ;& - a, 0:14 Qi1 Gpp1,04 Q3241 Gr424,14
engle taget) L. g - 88
| parallel decoding]
\ i))
ViT 4 ViT FILM | task description ' empty action embeddings ‘
vrr ‘ (e.g., “scoop raisins
's"'“" ptre ‘3:2'5'52: into bowt’
(cm OpenVLA-OFT+
(ALOHA Robot)

« parallel decoding w/ action chunking
« continuous actions
* L1 regression objective

* feature-wise linear modulation (FiLM) y

dexterous, bimanual control

long-horzon, contact-rich skills

A

language-based steenng

g .
Al
4

[Kim et al:RSS 2024.; Pertsch et al.]

High- FAST Action
Frequency R tokenization
Robot Data

N

Vision-Language-Action Model

~ oA N

N N N

"fold the shirt”

9 <A NVIDIA I

Family of VLAS

Hierarchical design instead of monolithic design

Leverage VLMs for generalization and specialized policies (3D) for action prediction

-

\

& & & &

s v v b

Action Detok.

s & P P Y Y Y
s o o o = s o o o =

~

]

n u
{ VLM J { VLM J [Action Expert 1 { VLM — Parallel Decoding
O X% X% X X0 X, T PUGCT e
o s W T T e S S R

[ViTJ

Discrete Token (OpenVLA)

[ViT}

FILM

Generative Head (Pi-0) Custom (OpenVLA-OFT)

J

{ VLM J
{ ViT }

Hierarchical (HAMSTER)

10 NVIDIA

HAMSTER: Hierarchical Action Models For Open-World Robot Manipulation

ICLR 2025

11

The HAMSTER VLM predicts points to denote
the 2D paths

Hamster VLA Training Data

High-Level model is trained on a variety of data sources (Sim, Real, Point-QA)

Pixel Point Prediction

-
R
2 Find all instances of Locate object between the
= cushions marked items
()
(o) WV
© =
£
[—]
2.
B S [(0.49, 0.38, 0.08, 0.06),) 4[5(;'?07’52'40825()0?08’55
Q& (0.53,0.42,0.07,0.05),...] o790 BE9) A9,
0.47), ..
" Object recognition in clutter
— Visual generalization
ﬁ Points similar structure to paths
"
)
w .
"
(v
= 100k
o
LVIS Robopoint

13 <ANVIDIA. I

Instr.
Z

Image
img

Paths
ans

Skills

Datasets

Hamster VLA Training Data

High-Level model is trained on a variety of data sources (Sim, Real, Point-QA)

VQA

What is the person feeding
the cat?

The person is feeding an apple
to the cat.

Semantic Reasoning

VQA

14 <ANVIDIA I

Instr.
Z

Image
img

Paths
ans

Skills

Datasets

Hamster VLA Training Data

High-Level model is trained on a variety of data sources (Sim, Real, Point-QA)

Simulated Robot

Screw in the green light
bulb

-

...........
S ea -~

[(0.4, 0.6, close), (0.4, 0.6,
close), (0.8, 0.7, open)]

Visual diversity
Data-scarce tasks

RLBench

15 <A NVIDIA. I

Instr.
yd

Image
img

Paths
ans

Skills

Datasets

Hamster VLA Training Data

High-Level model is trained on a variety of data sources (Sim, Real, Point-QA)

Off Domain Robot

Cover the bowl with the Put the marker inside
the silver pot

[(0.2, 0.2, close), (0.3, [(0.7, 0.5, close), (0.5,
0.2, close), (0.1, 0.2, 0.6, close), (0.6, 0.7,
close), (0.1, 0.3, open)] close), (0.7, 0.6, open)]

Grounding to real robot prediction

10k A5k

BridgeDatav2 DROID

16 <A NVIDIA. I

Hamster VLA Results

Robust To Novel Camera Position

v . 2 -
. /A | z
(Jl@ A ,

Instruction: Pick up the M&M chocolate and put it in the yellow mug

17 <ANVIDIA I

Hamster VLA Results

Sim to Real to Sketch

.

Instruction: Screw in the light bulb

18 <ANVIDIA. I

Hamster Results

Outperforms OpenVLA as well as 3D Policies

B RVT2 s 3DDA Wm OpenVLA mm HAMSTER+RVT2 mmm HAMSTER+3DDA

100 i
o 80 |
v i
, 00 :
& |
o 40 |
O [
r |

A A B -Ail n.AEN m IAEEE = HEE AD
Task Variation Basic Object and Goal Visual Language Spatial Novel Object Multiple Average

19 <ANVIDIA I

Failure Analysis

Low-Level Policy Struggles

slelk up he pesky ond pub & in e pon slek up e deght objest @nd pub & in Hhe lof dowl
VLM Failure Fail to Follow Trajectory Action Failure
Success
VLM Failure

Fail to Follow Trajectory
Action Failure

¢

HAMSTER with RVT-2 HAMSTER with 3D-DA

20 <ANVIDIA I

Hierarchical VLAs: Concurrent Works

Image

Image Observation Tokens / \ / \

User Prompt / Interjection ‘ oo E E
ﬂf g ‘ ncode & | Vision-Language | |
[] L]
~ O Model [l
: - Diffusion
: : Robot _
High-Level Policy Verbal Language Instruction Transformer
(VLM) Seerae “Pick up the industry Tokenize = System 2 =
object and place in ~ N [
yellow bin.” B |
Text System 1 Motor Action
an A Tokens \ J
Low-Level Language Command postions Velomtos Encode -
Base ¥ .
Position & EEFPoses
\ : Bl B8 |
Robot State
Low-Level Policy : Action Tokens < E E E E
Actions
(VLA) [] L] [] L]
. [\ O O /]
Joints

Denoising

[Hi Robot: Physical Intelligence] [GROOT: NVIDIA]

ROBOT IMAGES

£, | g HELIX
N — SYSTEM 2 SYSTEM 1
. 79hz [)
“Hey Figure, fold these ———— LatentVector | . .
y ? ,I ” Slower common sense Fast, Reactive continuous
OWEiS. vision-language semantic control
reasoning
ROBOT STATE
7B Pretrained VLM GPU2 80M Transformer GPU1

Finger positions

itangles [HELIX: Figure Robotics]

21 < NVIDIA I

3D Policies

Specialized and Efficient

b bbb

\J Y \J 9 \J ¢ Y ~ V) ~
e N N X9, 20
\> @‘00 \ \> 6\00 v O 6\0 v O ‘3\00 . O 9\00 \

o () (o

o G oo o0 oC o6 aC oG

* Take in Scene depth and / or camera calibration

* Specialized policies — Require very few demonstrations

22 <A NVIDIA I

RVT: Robotic View Transformer for 3D Object Manipulation
CoRL 2023

Ankit Goyal Jie XU Yijie Guo Valts Blukis Yu-Wei Chao Dieter Fox

23 <A NVIDIA I

Robotic View Transformer

i 8
@ =
. @

L

)
Success: Press sanitizer X Success: Put yellow block in top shelf ~ Success: Put blue block on red block™

1

:\V -

-
A
>

b
«
B ;
/

Success: Put orange bottle in top drawer Success: Press sanitizer « JSuccess: Put yellow block in bottom shelf

o P

-~

Lo/
Failure: Put blue marker in top drawer Failure: Press sanitizer X Failure: Put yellow blocK'in top shelf - | Success: Put yellow block on blue block

A single model achieves 90% success across tasks with just ~10 demos each.

24 <A NVIDIA. I

RVT: Robotic View Transformer for 3D Manipulation

Pipeline lllustration

ripper Rotation
o IRINTAAT T and State

.
. .
.
* o* * **
. . *
. L'y * *
. . ‘Q ‘0
* * *
*

~Multiflé modes ripper Location

* *

Instructions

“Stack the teal blocks”

le modes

Predicted 3D
Heatmap

Reconstructed
Input RGB-D Point Cloud
Images

Virtual redicted 2D
Images Heatmap

~~ NVIDIA

RVT: Robotic View Transformer for 3D Manipulation

Pipeline lllustration

Instructions

“Stack the teal blocks”

<ANVIDIA. I

RVT: Robotic View Transformer for 3D Manipulation

Pipeline lllustration

Gripper Rotation
and State

Gripper Location

Instructions

“Stack the teal blocks”

e

Scene Predicted 3D

Heatmap

Input RGB-D
Images

Virtual Predicted 2D
Images Heatmap

<ANVIDIA. I

RVT: Robotic View Transformer for 3D Manipulation

Pipeline lllustration

Gripper Rotation
and State

Instructions

Gripper Location

“Stack the teal blocks”

Predicted 3D

Heatmap
Input RGB-D

Images

Virtual Predicted 2D
Images Heatmap

<ANVIDIA. I

RVT: Robotic View Transformer for 3D Manipulation

Pipeline lllustration
Gripper Rotation

and State
Gripper Location

Instructions

“Stack the teal blocks”

Predicted 3D

Heatmap
Input RGB-D

Images

Virtual Predicted 2D
Images Heatmap

<A NVIDIA.

RVT-2: Learning Precise Manipulation from Few Examples

Point Cloud
Reconstruction

Zoomed-in Point
Cloud

RSS 2024

Virtual Cameras Predicted
RGB+XYZ+Depth Heatmaps Lifting to 3D

Multi-View
Transformer
Coarse

¥

»

Coarse Branch

Multi-View
Transformer
Fine

$

5 N

Virtual Cameras

RGB+XYZ+Depth Fine Branch

Multiscale design allows for precise manipulation with just 10 demos

30 <NVIDIA I

Family of VLAs

* How about the simplest variant?

* Predict Action as Text — No modification

-

b bbbl

EEEEN bbb b b s

& b FY S
el %8 %ed

PRl Wakl PRl PR P

1

% s oo
-
VLM J [VLM } { Action Expert } [VLM — Parallel Decoding } [VLM
PUohT PR PR Wbl Wbl PRl WF - . . , :
S S 5 S S S S i 5 S

ol

[WTJ [vw} [vn}

\

FILM

Discrete Token (OpenVLA) Generative Head (Pi-0)

Custom (OpenVLA-OFT) Hierarchical (HAMSTER)

J

.0 ‘00\ ‘O 0 \Oo\ ‘o ‘0
no?.oe (\O(io‘a

0T 0P P8

MY C o0t 0O

o ,b‘o N 0 ,6‘0 \ 0 ‘a‘o \

(\o \.\00 (\0 \AC)Q (\o ‘A(','b

T |

No Modification VLA (VLA-0)

31 <A NVIDIA I

VLA-O: Building State-of-the-Art VLAs with Zero Modification

32 <A NVIDIA I

VLA-0

No Modification to the VLM

VLA with no modification to the VLM
Predict Action as Text
No change to tokenization

No new architectural component

Training recipe is important - Check the paper for details

33 <A NVIDIA I

VLA-0

Results on Libero

* #1 among all non-pretrained architectures — Outperforming Pi-FAST, Pi-0.5-Kl, SmolVLA, OpenVLA-OFT

Even more surprising:

* Without any action pretraining, outperforms leading pretrained models like Pi-0, Pi-0.5-K, GROOT-N1, MomImoAct

LIBERO: Models Without Large-Scale Action Pretraining

100
2 90
Q
—
:
;80
7
o 72.4 71.8
g 70
n

60 —

Diffusion n-FAST SmolVLA SmolVLA OpenVLA .-
Policy (Paligemma) (0.24B) (2.25B) -OFT (Ours)

S
Q
e
©
oc
0
7
o
o
O
-
n

34 <A NVIDIA I

VLA-0

Output Action: 4 12 98 300135 1232300240 132 34 13 0... |

> 0 P X 4 P > ¢ > 4 PP’
0”0y P7a0%y P 0%y P70 P07y P 0%y 70
-. - ’ .. ~ ’ .. ~ ‘ ,. ~ / 0 ~ ’ .. ~ ’ .‘ ~ ’

Vision L Model
P71 %1 %1 7S] 9] OS] UGS P71 7T OS] U] %] OS] PO
) v \’ 0 \) v 0 0) v 9 v \) 0 \J 0 \) v
o©oe?® bo%6d kol keZe? oo eZed oo 020 0% ho%ed kel heZe?d el ho?c?

2 2

System Prompt User Prompt

Analyze the input image and predict Put the cupcake
robot actions for the next H in the bowl
LU P Left Camera Image Right Camera Image y

35 <A NVIDIA I

VLA-0

O 0V PORC] POV] BOTRC] OV BO oV] BOTC,
.Y 4 PO Y e P2 SO d POV .4 P2
o (« (
00‘00 29\00 29\00 2600 2600 26\00 26\00
L o 0 o 0 a) 2) - 0 a 0 o

)

System Prompt

Analyze the input image and predict
robot actions for the next H
timesteps

36 <A NVIDIA I

VLA-0

PR Boted Pods
O~ X0 00‘0000‘0 O~ X0 00
.o ’ 0 v 0 ‘ 0 v G ’ .o ’ 0 v

2

User Prompt

Put the cupcake

: in the bowl
Left Camera Image Right Camera Image y

37 <A NVIDIA I

VLA-0

Output Action: 4 12 98 300135123 2300240 132 34 13 0...

Vision Language Model

38 <A NVIDIA I

00
o

AN
o

Success Rate (%)
N (@)
o o

o

Place banana
on plate

(

|

Place cupcake
in bowl

VLA-0

Results in Real

1 SmolVLA [16]
Act. Pre-train v

SimpleVLA [Ours]
I Act. Pre-train X

Push apple Reorient Average
to block block

* On real world data, outperforms SmolVLA

* SmolVLA — Pretrained on large-scale SO-100 data
+ Finetuned on 100 demos per task

* VLA-O trained from scratch with 100 demos per task

39 <ANVIDIA I

arXiv:2510.13054v1 [cs.RO] 15 Oct 2025

VLA-0: Building State-of-the-Art VLAs with Zero Modification

Ankit Goyal, Hugo Hadfield, Xuning Yang, Valts Blukis, Fabio Ramos
NVIDIA

Abstract— Vision-Language-Action models (VLAs) hold im-
mense promise for enabling generalist robot manipulation.
However, the best way to build them remains an open question.
Current approaches often add complexity, such as modifying
the existing vocabulary of a Vision-Language Model (VLM)
with action tokens or introducing special action heads. Curi-
ously, the simplest strategy of representing actions directly as
text has remained largely unexplored. This work introduces
VLA-0 to investigate this idea. We find that VLA-0 is not only
effective; it is surprisingly powerful. With the right design,
VLA-0 outperforms more involved models. On LIBERO, a
popular benchmark for evaluating VLAs, VLA-0 outperforms
all existing methods trained on the same robotic data, including
m0.5-KI, OpenVLA-OFT and SmolVLA. Furthermore, without
large-scale robotics-specific training, it outperforms methods
trained on large-scale robotic data, like 7(.5-KI, 7o, GRO0OT-
N1 and MolmoAct. These findings also translate to the real
world, where VLA-0 outperforms SmolVLA, a VLA model
pre-trained on large-scale real data. This paper summarizes
our unexpected findings and spells out the specific techniques
required to unlock the high performance of this simple yet
potent VLA design. Visual results, code, and trained models
are provided at: https://vla0.github.io/.

I. INTRODUCTION

Following the success of Large Language Models (LLMs)
in text processing and Vision-Language Models (VLMs)
in handling both visual and textual inputs, a natural next
step is to explore Vision-Language-Action models (VLAS),
i.e. systems that not only understand visual and textual
information, but also predict actions for robotic agents. VLAs
are typically built by modifying a base VLM to predict
actions. However, it is still unclear what the ‘correct’ way
to do this 1s, if there is one at all. Recent research has taken
various approaches, which we broadly categorize into three
families, as shown in Figure 2: (1) Discrete Token VLAs, (2)
Generative Action Head VLAs, and (3) Custom Architecture
VLAs.

Discrete Token VLAs. It is one of the initial strategies
popularized by models such as RT-2 [24] and OpenVLA [11].
Robot actions, originally continuous, are discretized into
bins; each bin is then assigned a token from the VLM
vocabulary, using either new or infrequent tokens. The model
is then trained to predict these action tokens using the same
cross-entropy loss as used to train the base VLM. Although
straightforward, this approach has two main limitations: (i)
it restricts the resolution of the action space, since fine-
grained control can require thousands of bins, which conflicts
with sharing the text vocabulary; and (ii) it compromises
the pretrained language understanding of the VLM by repur-
posing its vocabulary for actions. Given these limitations,

such VLAs do not perform as well as other alternatives. (see
Tab. I)

Generative Action Head VLAs. Another common strategy
is to attach an action generation head on top of the VLM, as
done by methods like 7y [2] or SmolVLA [19]. The VLM is
fine-tuned to predict a latent vector, which is then decoded
into actions using a generative model such as a diffusion
process or flow matching. While this method improves action
fidelity, it also introduces a new neural network that needs
to be finetuned. This often leads to a decline in the language
understanding and grounding capabilities of the underlying
VLM [9], and introducing a non-pretrained action head may
compromise generalization of the overall system.

Custom Architecture VLAs. Beyond the above categories,
some methods propose architectural modifications or cus-
tom tokenizers tailored to action prediction. For instance,
OpenVLA-OFT [10] introduces a specialized ACT head.
Another example is m-FAST [16] that create a special tok-
enization scheme for actions using discrete cosine transform
(DCT). w-FAST can also be considered a discrete token
VLA, but for the purposes of this work, we classify them as
custom VLA as it involves a custom tokenization scheme.
While these custom methods are effective, they typically
involve significant architectural changes, additional param-

L

Place f:l}e cupcake in the bowl

T

VLA-O

41298300135123230024013234130
Action (Text)

Fig. 1: Schematic representation of VLA-0. VLA-O con-
verts a VLM into a VLA by prompting the VLM to predict
action as text. This strategy is surprisingly effective and
achieves state-of-the-art results akin to alternatives.

VLA-0

SCAN ME

40

NVIDIA

Summary
Thank you! Questions?

* Hierarchical VLAs — Combine the strength of VLMs and 3D Policies
* 3D Policies — Efficient task specific learners

* Among monolithic VLAs — Simplest design (VLA-0) is surprisingly effective

> » > » » [> » » >

e e b Lo b e e v o s

Action Detok. [e }

. > » [» » » » > > > Waol. WP, Wbl Wl S X900 XacC Xao PeC P,

o (o) i) ie)| ie b bbb el e e El s
[VLM J [VLM } Action Expert | [VLM — Parallel Decoding } [VLM J { VLM J
it | iT | (vn} it | [vn]
FiLM
Discrete Token (OpenVLA) Generative Head (Pi-0) Custom (OpenVLA-OFT) Hierarchical (HAMSTER) No Modification VLA (VLA-0)

41

<ANVIDIA. I

