

CS 6341 Robotics

Professor Yu Xiang

The University of Texas at Dallas

Robot Control

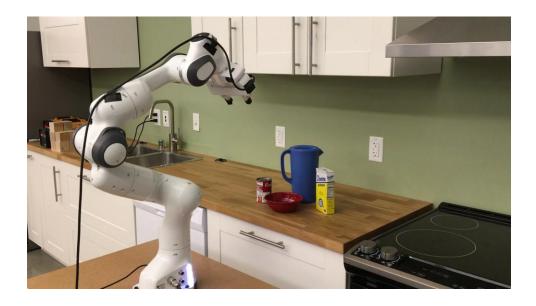
Convert task specifications to forces and torques at the actuators

- Moving an object from one place to another
- Tracing a trajectory for a spray paint gun
- Applying a polishing wheel to a workpiece
- Writing on a chalkboard

Motion Control

- Goal: follow a given robot trajectory
 - Trajectory of desired end-effector configuration $X_d(t)$
 - Trajectory of desired joint positions $\, heta_d(t) \,$





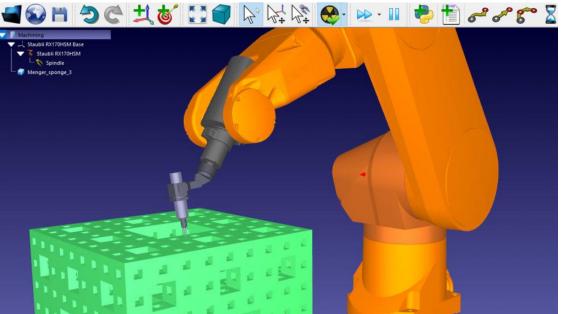
Can include

$$\dot{\theta}_d(t)$$

$$\ddot{ heta}_d(t)$$

Force Control

Goal: apply forces and torques to the environments



https://robodk.com/blog/force-control-robot-machining/

Hybrid Motion-Force Control

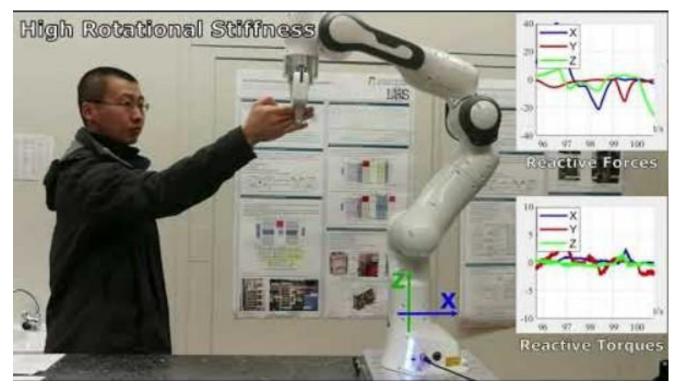
Goal: generate both force and motion

https://youtu.be/9NbwE4PMeyQ

Impedance Control

 Goal: robot end-effector is asked to render particular mass, spring, and damper properties.

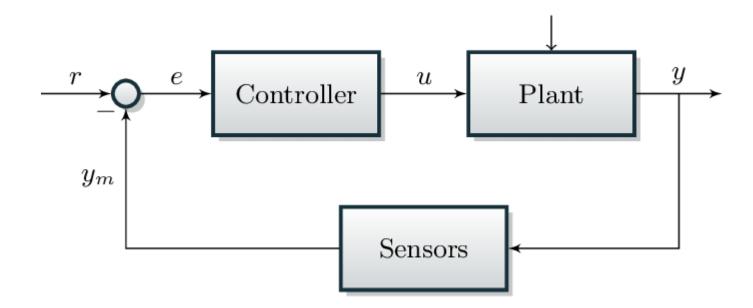
https://www.youtube.com/watch?v=FJBPNJR2QJU



https://youtu.be/XwiX2vv14Qs

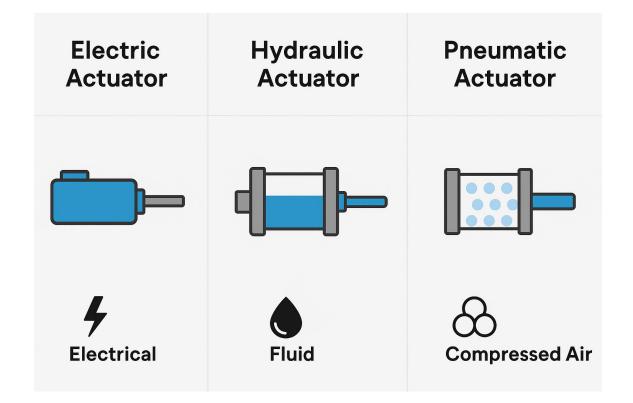
Using Feedback in Control

- Feedback control
 - Use sensors for position, velocity and force
 - Compare with the desired behavior to compute the control signals



Actuators

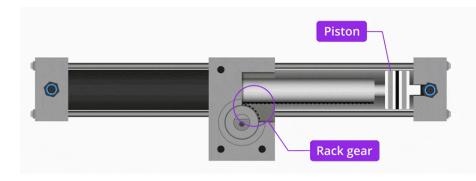
• An **actuator** converts **energy** (usually electrical, hydraulic, or pneumatic) into **mechanical motion** (force or torque)



Hydraulic and Pneumatic Actuators: Electricity → Mechanical rotation (motor) → Fluid/Air pressure (pump) → Motion (actuator)

Actuators

- Electric actuators → Best for precision and control (industrial & collaborative robots).
- Hydraulic actuators → Best for power and stiffness (heavy-duty or dynamic humanoids).
- Pneumatic actuators → Best for speed, simplicity, and soft interaction (grippers, lightweight robots)



Electric actuator

Hydraulic actuator

Pneumatic actuator

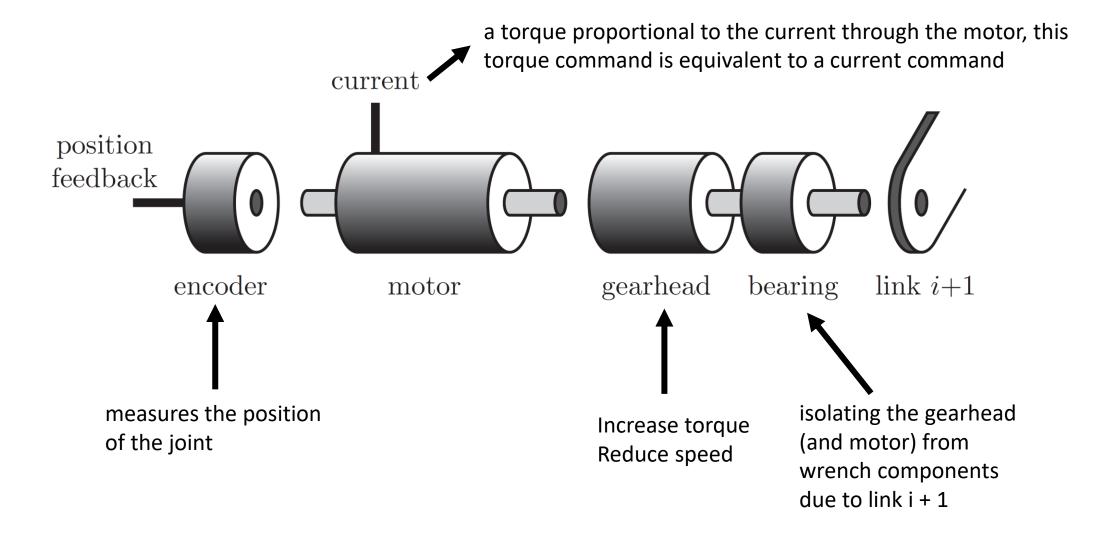
Boston Dynamics Atlas

Hydraulic Version

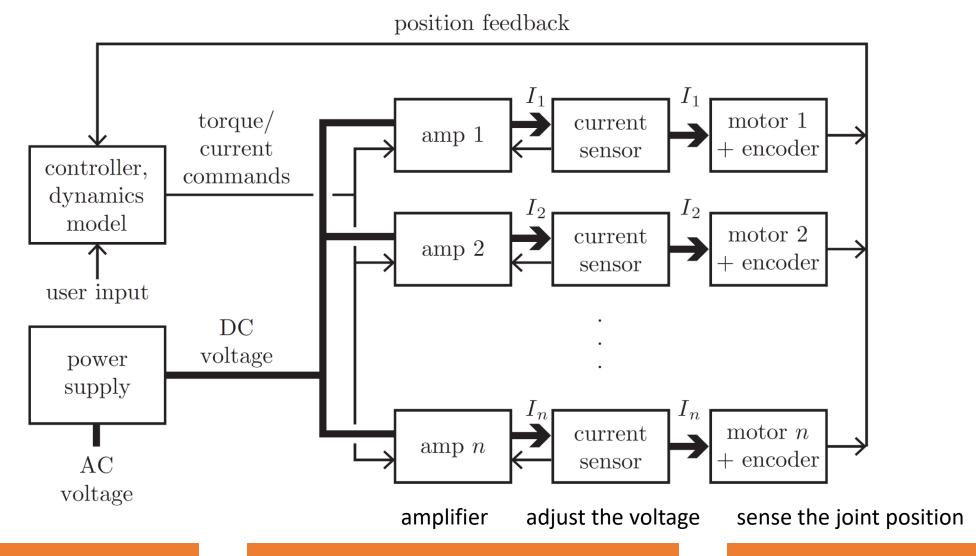
Electric Version

Version	Height	Weight
Atlas (2013, hydraulic)	188 cm (6'2")	~150 kg (330 lb)
Atlas HD (2016, hydraulic, "next- gen"/battery)	150 cm (4'11")	80 kg (176 lb)

Actuation with DC Electric Motors

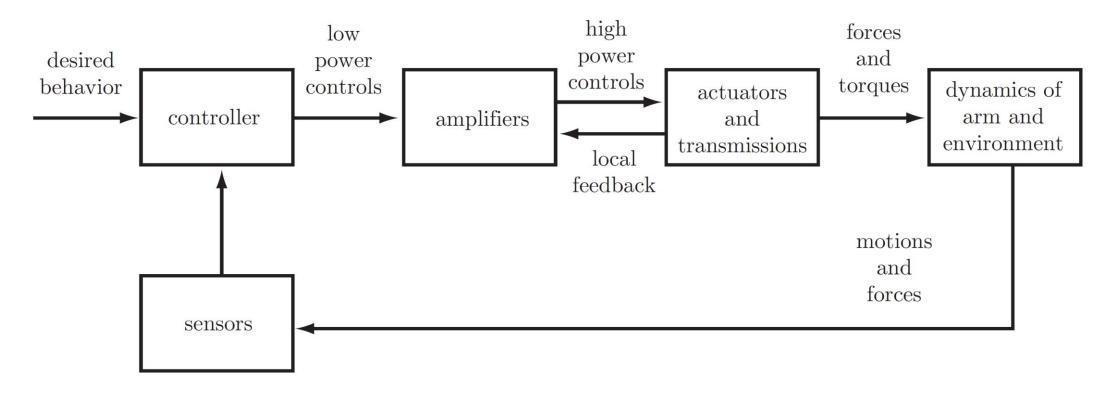


Actuation with DC Electric Motors



10/19/2025 Yu Xiang 12

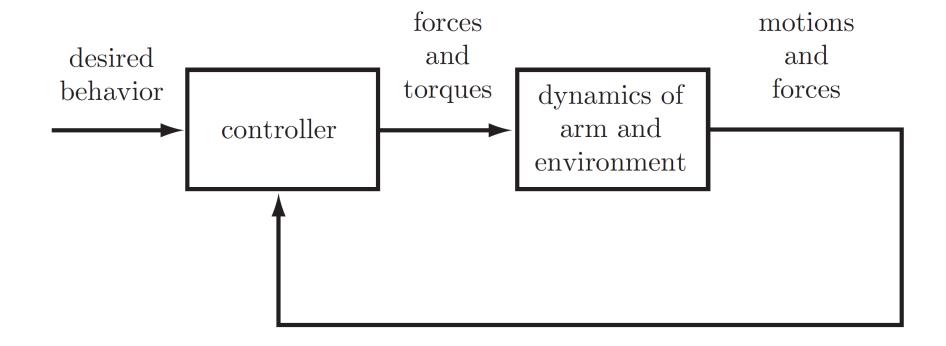
Control System Overview



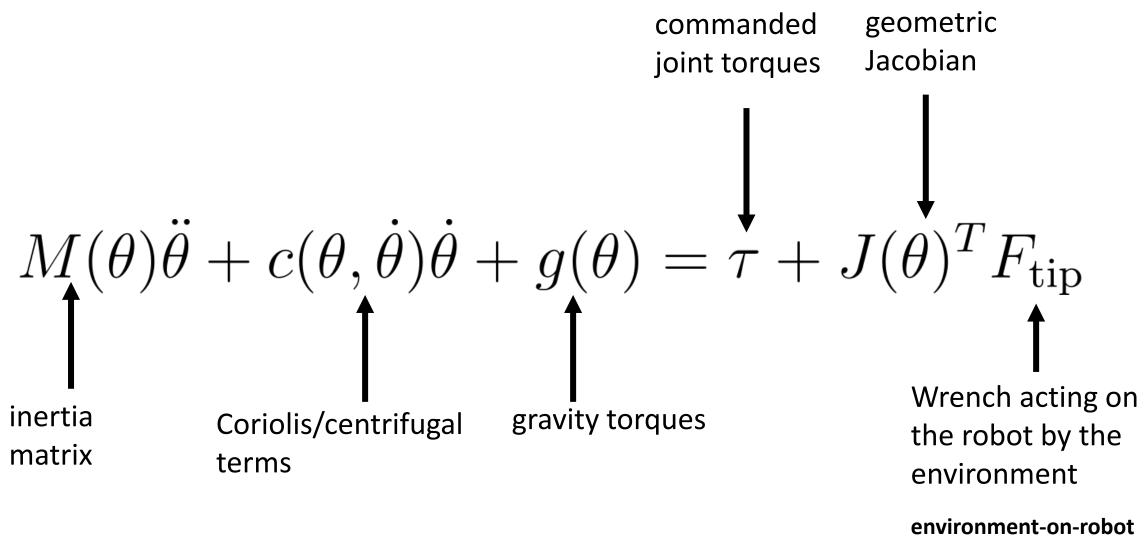
- Potentiometers, encoders, or resolvers for joint position and angle sensing
- Tachometers for joint velocity sensing
- Joint force-torque sensors
- Multi-axis force-torque sensors at the "wrist" between the end of the arm and the end-effector

Control System Overview

A simplified system



Robot Dynamics



10/19/2025 Yu Xiang 15

Robot Dynamics

• For example, Lynch & Park 8.4

The robot applies an external wrench at the end-effector

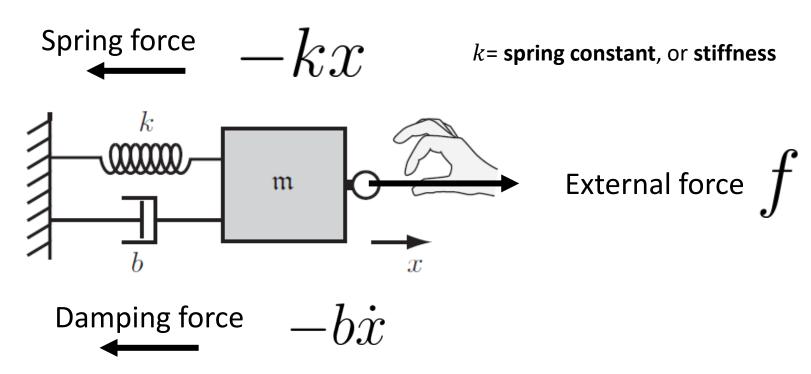
$$\tau = M(\theta)\ddot{\theta} + c(\theta, \dot{\theta}) + g(\theta) + J^{\mathrm{T}}(\theta)\mathcal{F}_{\mathrm{tip}}$$

$$M(\theta) = \mathcal{A}^{T} \mathcal{L}^{T}(\theta) \mathcal{G} \mathcal{L}(\theta) \mathcal{A},$$

$$c(\theta, \dot{\theta}) = -\mathcal{A}^{T} \mathcal{L}^{T}(\theta) \left(\mathcal{G} \mathcal{L}(\theta) \left[\operatorname{ad}_{\mathcal{A} \dot{\theta}} \right] \mathcal{W}(\theta) + \left[\operatorname{ad}_{\mathcal{V}} \right]^{T} \mathcal{G} \right) \mathcal{L}(\theta) \mathcal{A} \dot{\theta}$$

$$g(\theta) = \mathcal{A}^{T} \mathcal{L}^{T}(\theta) \mathcal{G} \mathcal{L}(\theta) \dot{\mathcal{V}}_{\text{base}}.$$

Mass-Spring-Damper Dynamics



Newton's second law

$$f - kx - b\dot{x} = m\ddot{x}$$
$$m\ddot{x} + b\dot{x} + kx = f$$

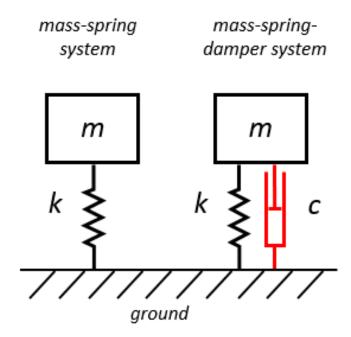
Robot dynamics

$$M(\theta)\ddot{\theta} + c(\theta, \dot{\theta})\dot{\theta} + g(\theta) = \tau + J(\theta)^T F_{\text{tip}}$$

10/20/2025 Yu Xiang 17

Mass-Spring-Damper Dynamics

• Damper: **resists motion** and **dissipates energy** — like friction or air resistance (slowing it down over time)



Mass-Spring-Damper Dynamics

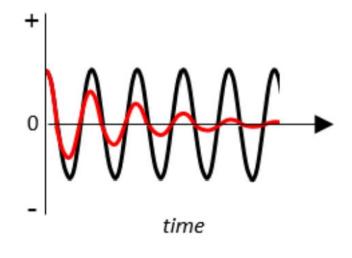
- Frequency = how many complete cycles (backand-forth motions) happen per second
 - Unit: Hertz (Hz), cycles per second
- Natural frequency: frequency the system would oscillate at if there were no damping

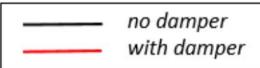
radians per second
$$\;\; \omega_n = \sqrt{rac{k}{m}} \;\;\;\;\;\;\;\;\;\;\; f_n = rac{\omega_n}{2\pi} \;\;\;\;\;\;\;\;$$

ullet Damped Natural Frequency $\,\omega_d$

$$\omega_d = \omega_n \sqrt{1-\zeta^2}$$
 Damping $\zeta = rac{b}{2\sqrt{km}}$

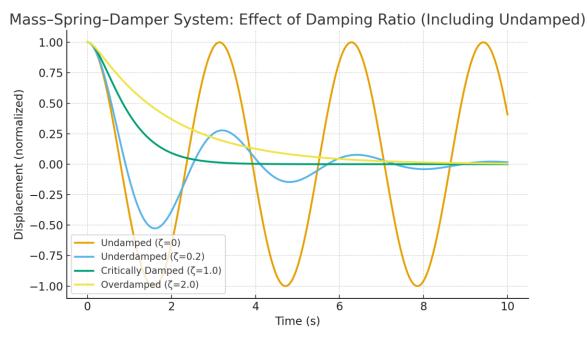
$$m\ddot{x} + b\dot{x} + kx = f$$





Mass-Spring-Damper Dynamics $m\ddot{x} + b\dot{x} + kx = f$

$$m\ddot{x} + b\dot{x} + kx = f$$



$$\zeta = rac{b}{2\sqrt{km}}$$

Damping Ratio (ζ)	Behavior	Motion	Damped Frequency
ζ = 0	Undamped	Pure oscillation	ω_{n}
0 < ζ < 1	Underdamped	Oscillates and decays	$\omega_n \sqrt{(1\!-\!\zeta^2)}$
ζ = 1	Critically damped	No oscillation, fastest return	0
ζ > 1	Overdamped	No oscillation, slow return	Imaginary (no real ω_n)

Controlled Dynamics of a Single Joint

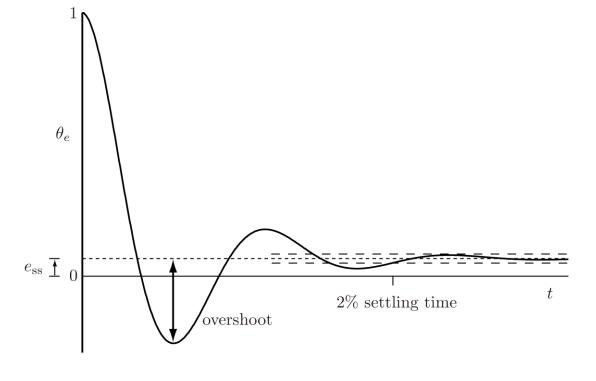
- Desired joint position $\theta_d(t)$
- The current joint position $\theta(t)$
- Joint error $\theta_e(t) = \theta_d(t) \theta(t)$
- Error dynamics: the differential equation governing the evolution of the joint error

• Feedback controller: create an error dynamics to make $\theta_e(t)$ become zero or a small value when t increases

Error Response

- How well a controller works?
 - Specify a nonzero initial error $\theta_e(0)$ and see how the controller reduces the error
- Error response $\theta_e(t), t>0$
 - Initial conditions $\theta_e(0)=1$ $\dot{\theta}_e(0)=\ddot{\theta}_e(0)=\cdots=0$

• Steady-state error $\theta_e(t)$ as $t \to \infty$

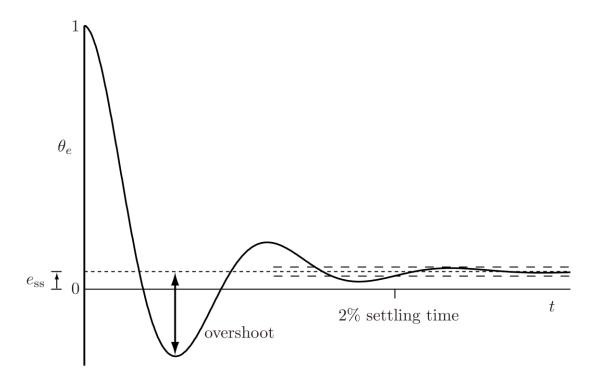


Error Response

• (2%) Settling time: first time T such that $|\theta_e(t) - e_{\rm ss}| \le 0.02(\theta_e(0) - e_{\rm ss})$ for all $t \ge T$

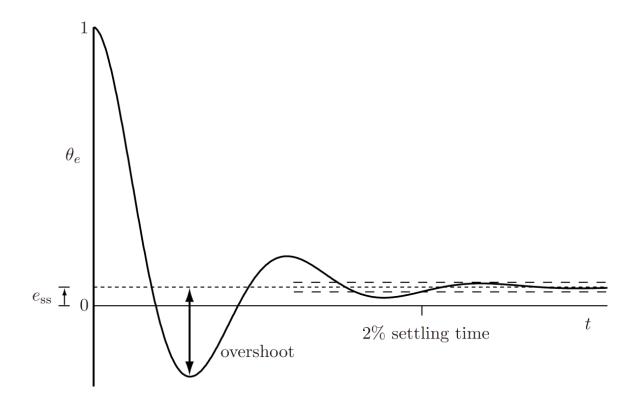
Overshoot

overshoot =
$$\left| \frac{\theta_{e,\text{min}} - e_{\text{ss}}}{\theta_{e}(0) - e_{\text{ss}}} \right| \times 100\%$$



Error Response

- A good error response
 - steady-state error Little or no
 - overshoot Little or no
 - 2% settling time A short



Summary

Robot control

Actuators

Mass-Spring-Damper Dynamics

• Error dynamics

Further Reading

• Chapter 11 in Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control. 1st Edition, 2017.