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Robot Control

• Convert task specifications to forces and torques at the actuators
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task 
specifications Controller

Forces and 
torques

• Moving an object from one place to another
• Tracing a trajectory for a spray paint gun
• Applying a polishing wheel to a workpiece
• Writing on a chalkboard



Motion Control

• Goal: follow a given robot trajectory
• Trajectory of desired end-effector configuration

• Trajectory of desired joint positions
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Can include



Force Control

• Goal: apply forces and torques to the environments
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Hybrid Motion-Force Control

• Goal: generate both force and motion 
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https://youtu.be/9NbwE4PMeyQ

https://youtu.be/9NbwE4PMeyQ


Impedance Control
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https://youtu.be/XwiX2vv14Qs

• Goal: robot end-effector is asked to render particular mass, spring, 
and damper properties.

https://www.youtube.com/watch?v=FJBPNJR2QJU
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Using Feedback in Control
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• Feedback control
• Use sensors for position, velocity and force

• Compare with the desired behavior to compute the control signals



Actuators

• An actuator converts energy (usually electrical, hydraulic, or 
pneumatic) into mechanical motion (force or torque)
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Hydraulic and Pneumatic Actuators:
Electricity → Mechanical rotation (motor) 
→ Fluid/Air pressure (pump) → Motion 
(actuator)



Actuators
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• Electric actuators → Best for precision and control (industrial & collaborative robots).

• Hydraulic actuators → Best for power and stiffness (heavy-duty or dynamic humanoids).

• Pneumatic actuators → Best for speed, simplicity, and soft interaction (grippers, lightweight 
robots)

Electric actuator Hydraulic actuator Pneumatic actuator 



Boston Dynamics Atlas
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Hydraulic Version Electric Version



Actuation with DC Electric Motors
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Increase torque
Reduce speed

measures the position 
of the joint

a torque proportional to the current through the motor, this 
torque command is equivalent to a current command

isolating the gearhead 
(and motor) from 
wrench components 
due to link i + 1



Actuation with DC Electric Motors

10/19/2025 Yu Xiang 12

amplifier adjust the voltage sense the joint position



Control System Overview
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• Potentiometers, encoders, or resolvers for joint position and angle sensing
• Tachometers for joint velocity sensing
• Joint force-torque sensors
• Multi-axis force-torque sensors at the “wrist" between the end of the arm and the end-effector



Control System Overview

• A simplified system
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Robot Dynamics
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inertia 
matrix

Coriolis/centrifugal 
terms

gravity torques

commanded 
joint torques

geometric 
Jacobian

Wrench acting on 
the robot by the 
environment

environment-on-robot



Robot Dynamics

• For example, Lynch & Park 8.4
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The robot applies an external 
wrench at the end-effector



Mass-Spring-Damper Dynamics
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External force

Damping force

Newton’s second law

Spring force 𝑘= spring constant, or stiffness

Robot dynamics



Mass-Spring-Damper Dynamics

• Damper: resists motion and dissipates energy — like friction or air 
resistance (slowing it down over time)
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Mass-Spring-Damper Dynamics

• Frequency = how many complete cycles (back-
and-forth motions) happen per second
• Unit: Hertz (Hz), cycles per second

• Natural frequency: frequency the system 
would oscillate at if there were no damping

• Damped Natural Frequency

10/19/2025 Yu Xiang 19

radians per second Hertz

Damping 
ratio



Mass-Spring-Damper Dynamics
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Controlled Dynamics of a Single Joint

• Desired joint position

• The current joint position

• Joint error

• Error dynamics: the differential equation governing the evolution of 
the joint error

• Feedback controller: create an error dynamics to make           become 
zero or a small value when t increases 
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Error Response

• How well a controller works?
• Specify a nonzero initial error            and see how the controller reduces the 

error

• Error response
• Initial conditions

• Steady-state error
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Error Response

• (2%) Settling time: first time T such that

• Overshoot 
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Error Response

• A good error response
• steady-state error

• overshoot

• 2% settling time
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Little or no 

Little or no 

A short 



Summary

• Robot control

• Actuators

• Mass-Spring-Damper Dynamics

• Error dynamics
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Further Reading

• Chapter 11 in Kevin M. Lynch and Frank C. Park. Modern Robotics: 
Mechanics, Planning, and Control. 1st Edition, 2017.
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