Visual Perception: Depth Perception

CS 6334 Virtual Reality

Professor Yu Xiang

The University of Texas at Dallas

NIV

THE

Visual Perception

• How humans perceive or interpret the real world using vision?

 We need to understand visual perception to achieve visual unawareness in VR systems

Depth Perception

- Metric
 - The car is 10 meters away
- Ordinary
 - The tree is behind the car

Depth Cues

• Information for sensory stimulation that is relevant to depth perception

• Monocular cues: single eye

• Stereo cues: both eyes

"Paris Street, Rainy Day," Gustave Caillebotte, 1877. Art Institute of Chicago

- Texture of the bricks
- Perspective projection
- Etc.

• Retinal image size

- Height in visual field
 - The closer to the horizon, the further the perceived distance

size constancy scaling

- Motion parallax
 - Parallax: relative difference in speed

Further objects move slower

Closer objects have larger image displacements than further objects

9/22/2021

Shadow

Occlusions

Image blur

Atmospheric cue

further away because it has lower contrast

Monocular Depth Estimation

https://heartbeat.fritz.ai/research-guide-for-depth-estimation-with-deep-learning-1a02a439b834

Stereo Depth Cues

- Vergence motion
 - Signals from motor control of the eye muscles

Stereo Depth Cues

- Binocular disparity
 - Each eye provides a different viewpoint, which results in different images on the retina

Geometry of Stereo Vision

- Basics: points and lines
- Homogeneous representation of lines

A line in a 2D plane
$$ax + by + c = 0$$
 $(a, b, c)^T$

$$k(a, b, c)^T$$
 represents the same line for nonzero k
A point lies on the line $\mathbf{x}^T \mathbf{l} = 0$ $\mathbf{x} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$ $\mathbf{l} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$

Points and Lines

• Intersection of lines

$$\mathbf{l} = (a, b, c)^T$$
 $\mathbf{l}' = (a', b', c')^T$
The intersection is $\mathbf{X} = \mathbf{l} imes \mathbf{l}'$ (vector cross product)
 $\mathbf{l} \cdot (\mathbf{l} imes \mathbf{l}') = \mathbf{l}' \cdot (\mathbf{l} imes \mathbf{l}') = 0$

$$\mathbf{l}^T \mathbf{x} = \mathbf{l}'^T \mathbf{x} = 0$$

Points and Lines

• Line joining points

$$\mathbf{l} = \mathbf{x} \times \mathbf{x}'$$
$$\mathbf{x} \cdot (\mathbf{x} \times \mathbf{x}') = \mathbf{x}' \cdot (\mathbf{x} \times \mathbf{x}') = 0$$
$$\mathbf{x}^T \mathbf{l} = \mathbf{x}'^T \mathbf{l} = 0$$

Epipolar Geometry

Epipolar Geometry

Rotation and Translation between two views

Yu Xiang

Epipolar Geometry

• What is the mapping for a point in one image to its epipolar line?

Yu Xiang

Fundamental Matrix

• Recall camera projection

 $P = K[R|\mathbf{t}]$ $\mathbf{x} = P\mathbf{X}$ Homogeneous coordinates

Backprojection

 $\mathbf{X}(\lambda) = \mathbf{P}^+ \mathbf{x} + \lambda \mathbf{C}$ P^+ is the pseudo-inverse of $P, PP^+ = I$

 $P^+\mathbf{x}$ and $C\,$ are two points on the ray

Fundamental Matrix

- Project to the other image
- $P^+\mathbf{x}$ and C are two points on the ray

$$P'P^+\mathbf{x}$$
 and $P'C$

- Epipolar line
- $\mathbf{l}' = (P'C) \times (P'P^+\mathbf{x})$

Epipole $\mathbf{e}'=(P'C)$

 $\mathbf{l}' = [\mathbf{e}']_{\times} (P'P^+\mathbf{x})$

Cross product matrix

Fundamental Matrix

• Epipolar line

$\mathbf{l}' = [\mathbf{e}']_{\times} (P'P^+\mathbf{x}) = F\mathbf{x}$

• Fundamental matrix $F = [\mathbf{e'}]_{\times} P' P^+$

3x3

Properties of Fundamental Matrix

 ${f x}'$ is on the epiploar line $\,{f l}'=F{f x}$ $\,{f x}'^TF{f x}=0$

- Transpose: if F is the fundamental matrix of (P, P'), then F^T is the fundamental matrix of (P', P)
- Epipolar line: $\mathbf{l}' = F\mathbf{x}$ $\mathbf{l} = F^T\mathbf{x}'$
- · Epipole: $e'^{\mathsf{T}}\mathsf{F} = \mathbf{0}$ $\mathbf{F}\mathbf{e} = \mathbf{0}$

 $\mathbf{e}^{\mathsf{T}}(\mathbf{F}\mathbf{x}) = (\mathbf{e}^{\mathsf{T}}\mathbf{F})\mathbf{x} = 0$ for all \mathbf{x}

• 7 degrees of freedom

Special Case: A Stereo System

Special Case: A Stereo System

• Left camera

$$x_l = f\frac{X}{Z} + p_x \qquad y_l = f\frac{Y}{Z} + p_y$$

• Right camera

$$x_r = f \frac{X - T_x}{Z} + p_x$$
$$y_r = f \frac{Y}{Z} + p_y$$

Stereo Disparity

Recall motion parallax: near objects move faster (large disparity)

9/22/2021	Yu Xiang	25
-----------	----------	----

Stereo Example

Fisherbran Safety Match Disparity values (0-64)

Note how disparity is larger (brighter) for closer surfaces.

 $d = f \frac{T_x}{Z}$

Computing Disparity

Left Image

For a patch in left image Compare with patches along same row in right image

- Eipipolar lines are horizontal • lines in stereo
- For general cases, we can find • correspondences on eipipolar lines
- Depth from disparity •

Triangulation

• Compute the 3D point given image correspondences

Intersection of two backprojected lines

$$\mathbf{X} = \mathbf{l} \times \mathbf{l}'$$

Triangulation

- In practice, we find the correspondences ${f y}~{f y}'$
- The backprojected lines may not intersect
- Find X^{*} that minimizes

Summary

- Depth perception
 - Monocular cues
 - Stereo cues
- Computational models for stereo vision
 - Epipolar geometry
 - Stereo Systems
 - Triangulation

Further Reading

- Section 6.1, Virtual Reality, Steven LaValle
- Multiview Geometry in Computer Vision, Richard Hartley and Andrew Zisserman, Chapter 9, Epipolar Geometry and Fundamental Matrix
- Stanford CS231A: Computer Vision, From 3D Reconstruction to Recognition, Lecture 5 <u>https://web.stanford.edu/class/cs231a/syllabus.html</u>