Visual Perception: Depth Perception

CS 6334 Virtual Reality Professor Yu Xiang

The University of Texas at Dallas

Visual Perception

- How humans perceive or interpret the real world using vision?

- We need to understand visual perception to achieve visual unawareness in VR systems

Depth Perception

- Metric
- The car is 10 meters away
- Ordinary
- The tree is behind the car

Depth Cues

- Information for sensory stimulation that is relevant to depth perception
- Monocular cues: single eye

"Paris Street, Rainy Day," Gustave Caillebotte, 1877. Art Institute of Chicago
- Stereo cues: both eyes
- Texture of the bricks
- Perspective projection
- Etc.

Monocular Depth Cues

- Retinal image size

Monocular Depth Cues

- Height in visual field
- The closer to the horizon, the further the perceived distance

size constancy scaling

Monocular Depth Cues

- Motion parallax
- Parallax: relative difference in speed

Further objects move slower

Closer objects have larger image displacements than further objects

Monocular Depth Cues

Monocular Depth Estimation

https://heartbeat.fritz.ai/research-guide-for-depth-estimation-with-deep-learning-1a02a439b834

Stereo Depth Cues

- Vergence motion
- Signals from motor control of the eye muscles

Nearby fixation

Divergence motion

Far fixation

Stereo Depth Cues

- Binocular disparity
- Each eye provides a different viewpoint, which results in different images on the retina

Geometry of Stereo Vision

- Basics: points and lines
- Homogeneous representation of lines

A line in a 2D plane $a x+b y+c=0 \quad(a, b, c)^{T}$

$$
k(a, b, c)^{T} \text { represents the same line for nonzero } \mathrm{k}
$$

$$
\text { A point lies on the line } \mathbf{x}^{T} \mathbf{l}=0 \quad \mathbf{x}=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \mathbf{l}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

Points and Lines

- Intersection of lines

$$
\mathbf{l}=(a, b, c)^{T} \quad \mathbf{l}^{\prime}=\left(a^{\prime}, b^{\prime}, c^{\prime}\right)^{T}
$$

The intersection is $\mathbf{X}=\mathbf{1} \times \mathbf{1}^{\prime} \quad$ (vector cross product)

$$
\begin{aligned}
& \mathbf{l} \cdot\left(\mathbf{l} \times \mathbf{l}^{\prime}\right)=\mathbf{l}^{\prime} \cdot\left(\mathbf{l} \times \mathbf{l}^{\prime}\right)=0 \\
& \mathbf{l}^{T} \mathbf{x}=\mathbf{l}^{\prime T} \mathbf{x}=0
\end{aligned}
$$

Points and Lines

- Line joining points

$$
\mathbf{l}=\mathbf{x} \times \mathbf{x}^{\prime}
$$

$$
\mathbf{x} \cdot\left(\mathbf{x} \times \mathbf{x}^{\prime}\right)=\mathbf{x}^{\prime} \cdot\left(\mathbf{x} \times \mathbf{x}^{\prime}\right)=0
$$

$$
\mathbf{x}^{T} \mathbf{l}=\mathbf{x}^{\prime T} \mathbf{l}=0
$$

Epipolar Geometry

Epipolar Geometry

Epipolar Geometry

Rotation and Translation
between two views

Epipolar Geometry

- What is the mapping for a point in one image to its epipolar line?

Fundamental Matrix

- Recall camera projection

$$
\begin{aligned}
& P=K[R \mid \mathbf{t}] \\
& \mathbf{x}=P \mathbf{X} \text { Homogeneous coordinates }
\end{aligned}
$$

- Backprojection

$$
\begin{aligned}
& \mathbf{x}(\lambda)=\mathrm{P}^{+} \mathbf{x}+\lambda \mathbf{C} \\
& P^{+} \text {isthe sesucuoineneseof } P, P P^{+}=I \\
& P^{+} \mathrm{X} \text { and } C \text { are twwo oonts on the eray }
\end{aligned}
$$

Fundamental Matrix

- Project to the other image

D+X and C are two points on the ray

- Epipolar line

$$
\mathbf{l}^{\prime}=\left(P^{\prime} C\right) \times\left(P^{\prime} P^{+} \mathbf{x}\right)
$$

$$
{ }_{\text {Epipole }} \mathbf{e}^{\prime}=\left(P^{\prime} C\right)
$$

Cross product matrix

$$
\mathbf{l}^{\prime}=\left[\mathbf{e}^{\prime}\right]_{\times}\left(P^{\prime} P^{+} \mathbf{x}\right)
$$

Fundamental Matrix

- Epipolar line

Properties of Fundamental Matrix

$$
\begin{gathered}
\mathbf{x}^{\prime} \text { is on the epiploar line } \mathbf{l}^{\prime}=F \mathbf{x} \\
\mathbf{x}^{\prime T} F \mathbf{x}=0
\end{gathered}
$$

- Transpose: if F is the fundamental matrix of $\left(P, P^{\prime}\right)$, then F^{\top} is the fundamental matrix of $\left(P^{\prime}, P\right)$
- Epipolar line: $\mathbf{l}^{\prime}=F \mathbf{x} \quad \mathbf{l}=F^{T} \mathbf{x}^{\prime}$
- Epipole: $\quad \mathbf{e}^{\prime \top} \mathrm{F}=\mathbf{0} \quad \mathrm{Fe}=\mathbf{0}$

$$
\mathbf{e}^{\prime \top}(\mathrm{Fx})=\left(\mathbf{e}^{\prime \top} \mathrm{F}\right) \mathbf{x}=0 \text { for all } \mathbf{x}
$$

- 7 degrees of freedom

$$
\operatorname{det} F=0
$$

Special Case: A Stereo System

Special Case: A Stereo System

- Left camera

$$
x_{l}=f \frac{X}{Z}+p_{x} \quad y_{l}=f \frac{Y}{Z}+p_{y}
$$

- Right camera
right
camera
located at
$\left(T_{x}, 0,0\right)$

$$
\begin{aligned}
& x_{r}=f \frac{X-T_{x}}{Z}+p_{x} \\
& y_{r}=f \frac{Y}{Z}+p_{y}
\end{aligned}
$$

Stereo Disparity

- Disparity

Recall motion parallax: near objects move faster (large disparity)

Stereo Example

Disparity values (0-64)

Note how disparity is larger (brighter) for closer surfaces.

Computing Disparity

- Eipipolar lines are horizontal lines in stereo
- For general cases, we can find correspondences on eipipolar lines
- Depth from disparity

$$
Z=f \frac{T_{x}}{d}
$$

Triangulation

- Compute the 3D point given image correspondences

Intersection of two backprojected lines

$$
\mathbf{X}=\mathbf{l} \times \mathbf{l}^{\prime}
$$

Triangulation

- In practice, we find the correspondences y \mathbf{y}^{\prime}

- The backprojected lines may not intersect
- Find X^{*} that minimizes

Summary

- Depth perception
- Monocular cues
- Stereo cues
- Computational models for stereo vision
- Epipolar geometry
- Stereo Systems
- Triangulation

Further Reading

- Section 6.1, Virtual Reality, Steven LaValle
- Multiview Geometry in Computer Vision, Richard Hartley and Andrew Zisserman, Chapter 9, Epipolar Geometry and Fundamental Matrix
- Stanford CS231A: Computer Vision, From 3D Reconstruction to Recognition, Lecture 5 https://web.stanford.edu/class/cs231a/syllabus.html

