NIV The Physics of Virtual Worlds

CS 6334 Virtual Reality

Professor Yu Xiang

The University of Texas at Dallas

Review of VR Systems

The Physics of Virtual Worlds

PyBullet Example

Programming HW1

PyBullet Example

Credit: Xiangyun Meng at UW

Yu Xiang

Physics Simulation

 \mathbf{s}_t

- Dynamical system
- State of the virtual world
- Object positions
- Object shapes
- Forces
- Energy

...

Physics Engine

Pendulum

8/30/2021

 \mathbf{S}_{t+1}

Particle Dynamics

• Determine the states of particles (e.g., position)

Particle Dynamics

- Determine the position of a mass-less particle
- Given velocity field $\mathbf{v}(\mathbf{x},t)$
- Initial Value Problem

$$\begin{aligned} \mathbf{x}_{p}(0) &= \mathbf{x}_{0} \\ \frac{d\mathbf{x}_{p}(t)}{dt} &= \dot{\mathbf{x}}_{p}(t) = \mathbf{v}(\mathbf{x}_{p}, t) \\ \text{How to calculate } \mathbf{X}_{p}(t) \end{aligned}$$

x_2							
•	•	•	-		~		•
\$	5		3	•	* •7	•	3
3	T	Ĩ	•	•	•7		3
3						•	3
				*	•7	~	3
3	•	•		•>			3
3	•*	3	-	-	-		3
•	>	*		•*	*		

8/30/2021

Differential Equations

• A differential equation is an equation that relates one or more functions and their derivatives

$$\frac{d\mathbf{x}_{p}(t)}{dt} = \dot{\mathbf{x}}_{p}(t) = \mathbf{v}(\mathbf{x}_{p}, t)$$

- Ordinary Differential Equation (ODE)
 - An equation that contains functions of only one independent variable and its derivatives
 - First-order ODE

Initial Value Problem

$$\begin{aligned} \mathbf{x}_p(0) &= \mathbf{x}_0 \\ \frac{d\mathbf{x}_p(t)}{dt} &= \dot{\mathbf{x}}_p(t) = \mathbf{v}(\mathbf{x}_p, t) \end{aligned}$$

• Euler integration

$$\frac{d\mathbf{x}_{p}(t)}{dt} = \lim_{\epsilon \to 0} \frac{\mathbf{x}_{p}(t+\epsilon) - \mathbf{x}_{p}(t)}{\epsilon}$$

$$\frac{d\mathbf{x}_p(t)}{dt} \approx \frac{\mathbf{x}_p(t + \Delta t) - \mathbf{x}_p(t)}{\Delta t}$$

$$\frac{\mathbf{x}_{p}(t + \Delta t) - \mathbf{x}_{p}(t)}{\Delta t} = \mathbf{v}(\mathbf{x}_{p}, t)$$

Position of the mass-less particle

$$\mathbf{x}_p(t + \Delta t) = \mathbf{x}_p(t) + \Delta t \cdot \mathbf{v}(\mathbf{x}_p, t)$$

x_2							
	3		-		~	~	•
*	5	3	•	•	* •7	•	
3			3	3	•7		3
			3	~		*	3
6	•	3	4	•	•7	*	3
8	3	3	•	•>	8	3	3
-	•7	-	-	1	1	-	-
•	*•	*		•7	1		•

 x_1

Particle Dynamics

- Determine the position of a particle with mass
- Newton's second law $\mathbf{f} = m\mathbf{a}$ Vector sum of all forces applied to each body in a system, newtons (N) Vector acceleration of each body with respect to an inertial reference frame, m/sec²

Mass of the body, kg

Acceleration of gravity g=9.81 m/sec²

Momentum

• The momentum of a body is

$$\mathbf{p}(t) = m\mathbf{v}(t)$$
Mass of the body, kg Velocity of the body, m/sec

• Newton's second law

$$\mathbf{f}(t) = \frac{d}{dt}\mathbf{p}(t) = m\frac{d}{dt}\mathbf{v}(t) = m\mathbf{a}(t)$$

Newton's Second Law

• Example

Bargteil, A., Shinar T. An introduction to physics-based animation, ACM SIGGRAPH 2018 Courses, 2018

A Particle with Mass

Initial value problem

$$\begin{aligned} \mathbf{x}_p(0) &= \mathbf{x}_0 \\ \frac{d^2 \mathbf{x}_p(t)}{dt^2} &= \ddot{\mathbf{x}}_p(t) = \frac{\mathbf{f}(\mathbf{x}_p, t)}{m_p} \end{aligned}$$

• First-order equations

$$\begin{aligned} \mathbf{x}_{p}(0) &= \mathbf{x}_{0} \\ \mathbf{v}_{p}(0) &= \mathbf{v}_{0} \\ \frac{d\mathbf{x}_{p}(t)}{dt} &= \dot{\mathbf{x}}_{p}(t) = \mathbf{v}_{p}(t) \\ \frac{d\mathbf{v}_{p}(t)}{dt} &= \dot{\mathbf{v}}_{p}(t) = \frac{\mathbf{f}(\mathbf{x}_{p}, t)}{m_{p}} \end{aligned}$$

Euler's method

$$\mathbf{v}_{p}(t + \Delta t) = \mathbf{v}_{p}(t) + \Delta t \cdot \frac{\mathbf{f}(\mathbf{x}_{p}, t)}{m_{p}}$$
$$\mathbf{x}_{p}(t + \Delta t) = \mathbf{x}_{p}(t) + \Delta t \cdot \mathbf{v}_{p}(t + \Delta t)$$

Materials

Rigid bodies

• No deformation

Soft bodies

• Deform elastically and plastically

Fluids

• Air, water, honey, etc.

Particles with springs

8/30/2	2021
--------	------

Rigid Bodies

- No deformation
- 6 DOF: 3D translation and 3D rotation
- Particles with very stiff springs
- Center of mass

$$\mathbf{x}_{com} = \frac{\sum_{i=1}^{N} m_i \mathbf{p}_i}{\sum_{i=1}^{N} m_i}$$

Bargteil, A., Shinar T. An introduction to physics-based animation, ACM SIGGRAPH 2018 Courses, 2018

Object Space vs. World Space

(b) World space.

Linear Velocity

$$\mathbf{p}(t) = \mathbf{x}(t) + \mathbf{R}(t)\mathbf{r}_0$$

$$\mathbf{v}(t) = \dot{\mathbf{p}}(t) = \dot{\mathbf{x}}(t) + \dot{\mathbf{R}}(t)\mathbf{r}_0$$

(b) World space.

Linear velocity

• Motion of the particle due to linear velocity of the body

Instantaneous Rotation

$$\mathbf{p}(t) = \mathbf{x}(t) + \mathbf{R}(t)\mathbf{r}_0$$

$$\mathbf{v}(t) = \dot{\mathbf{p}}(t) = \dot{\mathbf{x}}(t) + \dot{\mathbf{R}}(t)\mathbf{r}_0$$

Motion of the particle due to the instantaneous rotation of the body about its center of mass

(b) World space.

Angular Velocity $\,\omega$

Euler's rotation theorem $\dot{\mathbf{R}}(t)\mathbf{r}_0$

- The vector whose direction is the instantaneous axis of rotation
- Length is the rate of rotation in radians per second

$$\dot{\mathbf{R}}(t)\mathbf{r}_0 = \boldsymbol{\omega}(t) \times \mathbf{r}(t)$$
$$\mathbf{v}(t) = \dot{\mathbf{p}}(t) = \dot{\mathbf{x}}(t) + \boldsymbol{\omega}(t) \times \mathbf{r}(t)$$
$$\mathbf{r}(t) = \mathbf{R}(t)\mathbf{r}_0 \quad \dot{\mathbf{R}}(t) = \boldsymbol{\omega}(t) \times \mathbf{R}(t)$$

ω

Linear Momentum $\mathbf{P}(t) = \sum_{i=1}^{N} m_i \mathbf{v}_i(t)$ $\mathbf{r}(t)$ $\mathbf{P}(t) = \sum_{i=1}^{N} m_i \left(\dot{\mathbf{x}}(t) + \boldsymbol{\omega}(t) \times \mathbf{r}_i(t) \right)$ $\mathbf{x}(t)$ $\mathbf{p}(t)$ $=\sum_{i=1}^{N} m_i \dot{\mathbf{x}}(t) + \boldsymbol{\omega}(t) \times \left(\sum_{i=1}^{N} m_i \mathbf{r}_i(t)\right)$ (b) World space. **Derivation HW1** $\mathbf{P}(t) = M\dot{\mathbf{x}}(t)$ $M = \sum m_i$

$\mathbf{L}(t) = \sum_{i=1}^{N} \mathbf{r}_{i}(t) \times m_{i} \mathbf{v}_{i}(t)$

$$\mathbf{L}(t) = \sum_{i=1}^{N} m_i \mathbf{r}_i(t) \times (\dot{\mathbf{x}}(t) + \boldsymbol{\omega}(t) \times \mathbf{r}_i(t))$$
$$= \sum_{i=1}^{N} m_i \mathbf{r}_i(t) \times \dot{\mathbf{x}}(t) + \sum_{i=1}^{N} m_i \mathbf{r}_i(t) \times \boldsymbol{\omega}(t)$$

Angular Momentum

$$=\sum_{i=1}^{N} m_{i} \mathbf{r}_{i}(t) \times \dot{\mathbf{x}}(t) + \sum_{i=1}^{N} m_{i} \mathbf{r}_{i}(t) \times \boldsymbol{\omega}(t) \times \mathbf{r}_{i}(t)$$

(b) World space.

$$\mathbf{L}(t) = \sum_{i=1}^{N} m_i \mathbf{r}_i(t) \times (\boldsymbol{\omega}(t) \times \mathbf{r}_i(t))$$

Angular Momentum

$$\mathbf{L}(t) = \sum_{i=1}^{N} m_i \mathbf{r}_i(t) \times (\boldsymbol{\omega}(t) \times \mathbf{r}_i(t))$$

 $\boldsymbol{\omega} \times \mathbf{r} = -\mathbf{r} \times \boldsymbol{\omega}$

$$\mathbf{L}(t) = \sum_{i=1}^{N} m_i \mathbf{r}_i(t) \times (-\mathbf{r}_i(t) \times \boldsymbol{\omega}(t))$$

Cross product matrix $-\mathbf{r}^{\star} = \mathbf{r}^{\star T}$

$$\mathbf{r}^{\star} = \begin{pmatrix} 0 & -r_z & r_y \\ r_z & 0 & -r_x \\ -r_y & r_x & 0 \end{pmatrix}$$

$$\mathbf{L}(t) = \sum_{i=1}^{N} m_i \mathbf{r}_i^{\star}(t) (\mathbf{r}_i^{\star T}(t) \boldsymbol{\omega}(t))$$
$$= \left(\sum_{i=1}^{N} m_i \mathbf{r}_i^{\star}(t) \mathbf{r}_i^{\star T}(t)\right) \boldsymbol{\omega}(t)$$

(b) World space.

Angular Momentum

$$\mathbf{L}(t) = \sum_{i=1}^{N} m_i \mathbf{r}_i^{\star}(t) (\mathbf{r}_i^{\star T}(t) \boldsymbol{\omega}(t))$$
$$= \left(\sum_{i=1}^{N} m_i \mathbf{r}_i^{\star}(t) \mathbf{r}_i^{\star T}(t)\right) \boldsymbol{\omega}(t)$$

$$\mathbf{p}(t)$$

(b) World space.

$$\mathbf{r}^* \mathbf{r}^{*T} = \mathbf{r}^T \mathbf{r} \boldsymbol{\delta} - \mathbf{r} \mathbf{r}^T$$

 $\boldsymbol{\delta}$ is the 3 × 3 identity matrix
 $\mathbf{r} = \mathbf{R} \mathbf{r}_0$

Inertia tensor

$$\mathbf{I}(t) = \sum_{i=1}^{N} m_i \mathbf{r}_i^{\star}(t) \mathbf{r}_i^{\star T}(t)$$

$$\mathbf{I}(t) = \mathbf{I}(t) \boldsymbol{\omega}(t)$$

$$\mathbf{I}(t) = \mathbf{I}(t) \mathbf{\omega}(t)$$

$$\mathbf{I}(t) = \sum_{i=1}^{N} m_i \mathbf{r}_i^{\star}(t) \mathbf{r}_i^{\star T}(t)$$

Inertia tensor

 $\mathbf{L}(t) = \mathbf{I}(t)\boldsymbol{\omega}(t)$

Force and Torque

Linear momentum $\mathbf{P}(t) = M\dot{\mathbf{x}}(t)$ $M = \sum_{i=1}^{N} m_i$

Angular momentum $L(t) = I(t)\omega(t)$

(b) World space.

• When a force apply to center of mass

Newton's second law

$$\frac{d}{dt} \begin{pmatrix} \mathbf{P}(t) \\ \mathbf{L}(t) \end{pmatrix} = \begin{pmatrix} \mathbf{f}(t) \\ \boldsymbol{\tau}(t) \end{pmatrix}_{\text{Torque}}$$

 $\mathbf{a} = \mathbf{f}/M$

- When a force apply to a point
 - $\tau = \mathbf{r} \times \mathbf{f}$

Force

Dynamics of Rigid Bodies

$$\mathbf{v}(t) = \frac{\mathbf{P}(t)}{M} \qquad \mathbf{I}(t) = \mathbf{R}(t)\mathbf{I}_0\mathbf{R}(t)^T \qquad \boldsymbol{\omega}(t) = \mathbf{I}(t)^{-1}\mathbf{L}(t)$$

$$\frac{d}{dt} \begin{pmatrix} \mathbf{x}(t) \\ \mathbf{R}(t) \\ \mathbf{P}(t) \\ \mathbf{L}(t) \end{pmatrix} = \begin{pmatrix} \mathbf{v}(t) \\ \boldsymbol{\omega}^{\star}(t) \mathbf{R}(t) \\ \mathbf{f}(t) \\ \boldsymbol{\tau}(t) \end{pmatrix}$$

Linear Velocity Angular Velocity Force

Torque

https://gfycat.com/

Further Readings

- Section 8.1, 8.3 in Virtual Reality, Steven LaValle
- Bargteil, A., Shinar T. <u>An introduction to physics-based animation</u>, ACM SIGGRAPH 2018 Courses, 2018.
- Rick Parent. Computer Animation: Algorithms and Techniques, 2012.