Introduction to Virtual Reality

CS 6334 Virtual Reality

Professor Yu Xiang

The University of Texas at Dallas

Some slides of this lecture are based on the Virtual Reality textbook by Steven LaValle

NIV

Who am I?

- Assistant Professor in CS at UTD (joined Fall 2021)
 - Research area: robotics and computer vision
- Senior Research Scientist at NVIDIA (2018 2021) Robotics
- Postdoc Stanford, University of Washington (2016 2018)
- Ph.D., Electrical and Computer Engineering, University of Michigan, 2016
- Master, CS, Fudan University, China, 2010
- Bachelor, CS, Fudan University, China, 2007

Introduce yourself

- Name
- Major program
- Which year in the program?
- Where are you from?

What is Virtual Reality?

Birdy experience from the Zurich University of the Arts

What is Virtual Reality?

Virtual Maze for a Gerbil

(a) An experimental setup used by neurobiologists at LMU Munich to present visual stimuli to a gerbil while it runs on a spherical ball that acts as a treadmill.

(b) A picture of a similar experiment, Princeton University

8/23/2021

Definition of Virtual Reality

- "Inducing targeted behavior in an organism by using artificial sensory stimulation, while the organism has little or no awareness of the interface" – Steven LaValle
 - Targeted behavior: designed by the creator, flying, walking, exploring, gaming
 - Organism: humans, animals, fruit fly, fish, etc.
 - Artificial sensory stimulation: vision, audio, touch, etc.
 - Unawareness: unawareness of the interface, being "fooled" in a virtual world

What is Virtual Reality?

Birdy experience from the Zurich University of the Arts

Target behavior: flying Organism: the user Artificial sensory stimulation: vision, wind, body motion Unawareness: feels like in the air of San Francisco

More VR Examples

Training

Gaming

Education

Visualization

Socializing

8/23/2021

Augmented Reality

- Visual stimuli are from both the virtual world and the real world
 - Combines real and virtual
 - Interactive in real time
 - Registered in 3D
 - Unawareness

Microsoft HoloLens

More AR Examples

Shopping

Assisting

Navigation

Training

Surgery

8/23/2021

Yu Xiang

National Academy of Engineering

 "Enhance Virtual Reality" is 1 of 14 NAE grand challenges for engineering in the 21st century

A Brief History of Virtual Reality

Stereoscopes since 1838

- Humans perceive depth and 3D from stereopsis
- A stereoscope displays images for left-eye and right eye

Charles Wheatstone, 1838

Holmes stereoscope, 1861

View-Master, 1930s

Sensorama by Morton Heilig (1957)

- 3D motion picture through stereoscopic display
- Pre-recorded video content
- Stereo sound
- Smell
- Wind
- Seat vibrations

Filmmaker

First Head-Tracked, Head-Mounted Display (1968)

- Ivan Sutherland developed the first head-tracked, head-mounted display
 - Tracked head movements
 - Perception of stationary

Computer scientist

VPL Research (company) by Jaron Lanier (1984)

- The DataGlove
 - Wired to computer
 - Track hand movements and orientations
 - Allow people to manipulate and re-orient virtual objects
- The EyePhone
 - An HMD to immerse users into a computer simulation
 - Track head movement
- The DataSuit
 - A full-body outfit with sensors for measuring the movement of arms, legs and trunk

Cave Automatic Virtual Environment (1992)

- A room with video projected on walls
- Stereoscopic viewing using polarized light and special glasses
- Head tracking for viewpoint-dependent video

Nintendo Virtual Boy (1995)

- 32-bit portable video game console with HDM
- Marketed as the first console capable of displaying stereoscopic 3D graphics
- Sales failed to meet targets, and Nintendo ceased distribution in 1996
 - Released 22 games for the system

Revival of VR (2016)

Oculus Rift

HTC Vive

Playstation VR

Tracking technologies

Overview of VR Systems

Natural V.S. Virtual

VR Systems

What will you learn in this course?

- Ability to develop 3D virtual environments
- Ability to render 3D virtual worlds into images
- Ability to understand human visual system and visual perception
- Ability to understand audio and haptics
- Ability to develop head tracking, eye tracking and pose tracking techniques
- Ability to develop locomotion, 3D selection and manipulation techniques
- Ability to develop robotic interfaces

Grading Policy

- Homework (40%)
 - 4 homework in total
 - Individual submission
- Team Project (55%): prototype of a VR system
 - 2 or 3 students for a project
 - Project proposal (5%)
 - Project mid-term report (10%)
 - Project presentation (15%)
 - Project final report (25%)
- In-class Activity (5%)
- No final exam!

Course Details

Textbook

Steven M. LaValle. Virtual Reality. To be published by Cambridge University Press. Available online: <u>http://lavalle.pl/vr/</u>

• My office hour

Monday & Wednesday 2:30PM – 3:30 PM Email Appointment

- TA office hour: TBD
- Course access and navigation: <u>eLearning</u>