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Tracking in VR

* Tracking the user’s sense organs
* E.g., Head and eye
* Render stimulus accordingly

* Tracking user’s other body parts
e E.g., human body and hands
* Locomotion and manipulation

* Tracking the rest of the environment
* Augmented reality
* Obstacle avoidance in the real world




Feature-based Tracking

The PnP problem

* Known: 3D locations, 2D locations,
Ay camera intrinsics

e Unknown:

Features in Image
6D pose of the camera

Focal Point Features in World

What if we do not have the 3D locations of these feature points?

x Image Plane




Feature-based Tracking

* |dea: using images from different views and feature matching

Geometry-aware Feature Matching for Structure from Motion Applications. Shah et al, WACV’15
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Feature-based Tracking

* |dea: using images from different views and feature matching

* Triangulation from pixel correspondences to compute 3D location

A

Intersection of two backprojected lines

A X =1xV

Unknow




Structure from Motion

* Input
* A set of images from different views

* Output
* 3D Locations of all feature points in a world frame
* Camera poses of the images




Structure from motion
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Structure from Motion

* Minimize sum of squared reprojection errors

s0RT =) [P, m—rsz,;nf

i=1 j=1t
predlcted observed
,l, image location image location
indicator variable:

is point j visible in image j ?

m points, n images

A non-linear least squares problem
* E.g. Levenberg-Marquardt




The Levenberg-Marquardt Algorithm

* Nonlinear least squares 3 c argmin, 5 (8) = argming 3 _ [y — f (s, 8)]’
i=1

* An iterative algorithm
* Start with an initial guess (¢

* For eachiteration 5 < 5 + 0

* How to get 5?

a 19
* Linear approximation f(z;,B + 8) =~ f(zi, B) + J:é Ji = f(;ﬁ 2
* Find to 5 minimize the objective S (8 + d) = Z i — f(zi,B) — Jf5]2
=1 Wikipedia




The Levenberg-Marquardt Algorithm

T

* Vector notation for  S(8+8) ~ > [y — f(a:,8) — J:0]’
i=1
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Take derivation with respect to 5 and set to zero (JTJ) §=J[y —f(B)

Levenberg's contribution (J*J + AI)§=J" [y — £(B)]  damped version
B+ B+9

Wikipedia




Structure from Motion

GORT =Y - [P Ry ¢ >-[1;‘;;1u2

i=1j=1—-
pred/cted observed
l, image location image location
indicator variable:

is point j visible in image j ?
f=(X,R,T)

How to get the initial estimation 50 ?

Random guess is not a good idea.




Matching Two Views
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We need 8 points to solve this system. 22




Matching Two Views

e Essential matrix E
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credit: Thomas Opsabhl




Matching Two Views

* In 1981 H. C Longuet-Higgins
proved that one could
recover the relative pose R
and t from the essential
matrix E up to the scale of ¢

credit: Thomas Opsahl w=K[I |0]X u' = K'[R | t]X

H. C Longuet-Higgins, A computer algorithm for reconstructing a scene from two projections, 1981




Triangulation

X

N

A

Intersection of two backprojected lines

X=1xVT

A

4mm——)
R T

Estimated from essential matrix E

How to get the initial estimation 60 ?

/8 == (X7 R? T)




Structure from Motion

2
* Bundle adjustment gX.RT) = EZWU ‘P(X“ tf) - [vl,]H
1 =1 \
* |teratively refinement of st predicted observed
structure (3D pOintS) and ind,-cato{var,-ab/e. image location image location

motion (camera poses) is point 7 visible in image j ?

Reconstructed X;

* Levenberg-Marquardt 8 g groundmuthX,
algorithm e

Examples: http://vision.soic.indiana.edu/projects/disco/



http://vision.soic.indiana.edu/projects/disco/

Basics

* Image feature matching




Harris Corner Detector

e Corners are regions with large variation in intensity in all directions

o H

N

fo/ ol

“flat” region: “edge’™ ‘corner’:

no change in no change significant

all directions along the edge change in all
direction directions




Harris Corner Detector
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Harris Corner Detector

https://docs.opencv.org/master/dc/d0d/t
utorial_py_features_harris.html
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Invariance

e Can the same feature point be detected after some transformation?
* Translation invariance

e 2D rotation invariance

e Scale invariance

Are Harris corners scale invariance?

-
No [ (I O




Scale Invariance Feature Transform (SIFT

* Keypoint detection

* Compute descriptors

* Matching descriptors




SIFT: Scale-space Extrema Detection

* How to detect keypoints?
* E.g., applying a second derivative of Gaussian kernel to an image (Laplacian of

Gaussian)
Gaussian  G(xz,y,0) = Le—(m%ﬁyg)/%2 ”
7 2mo? i Scale O-
g(X) .\‘y
In pixels, radius
g"(x) b | ¢

| I s of the kernel




SIFT: Scale-space Extrema Detection
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L(z,y,0) = G(z,y,0) * I(x,y) D(x,y,0) (G(z,y, ko) — G(z,y,0)) * I(z,y)
L —@?1y?)/20? = L(x,y,ko) — L(z,y,0).

G(x,y,0) = 53¢




SIFT Descriptor

e Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
e Compute an orientation histogram for each cell
e 16 cells * 8 orientations = 128 dimensional descriptor

Image gradients Keypoint descriptor




SIFT: Rotation Invariance

* Rotate all orientations by the dominant orientation




SIFT Matching Example

Computer Vision




Simultaneous Localization and Mapping
(SLAM)

* Localization: camera pose tracking
* Mapping: building a 2D or 3D representation of the environment

* The goal here is the same as structure from motion, usually with
video input

N

ORB-SLAM2
e Point cloud and camera poses




ORB-SLAM

Oriented FAST and Rotated
BRIEF (ORB)

Tracking camera poses
* Motion only Bundle
Adjustment (BA)

Mapping
e Local BA around
camera pose

Loop closing
* Loop detection

https://webdiis.unizar.es/~raulmur/orbslam/




3D Scanning

e Using laser to create “point clouds”

(a)

Figure 9.26: (a) The Afinia ES360 scanner, which produces a 3D model of an
object while it spins on a turntable. (b) The Focus3D X 330 Laser Scanner, from
FARO Technologies, is an outward-facing scanner for building accurate 3D models
of large environments; it includes a GPS receiver to help fuse individual scans into

a coherent map.




3D Scanning

Help | Terms [EJ Matterport




Further Reading

e Section 9.5, Virtual Reality, Steven LaValle

 SIFT: Distinctive Image Features from Scale-Invariant Keypoints, David
Lowe, 1JCV'04

e ORB-SLAM: ORB-SLAM: a Versatile and Accurate Monocular SLAM
System, Mur-Artal et al., T-RO’15




