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Motivation: Using robots as tools

Most challenging problems are Al complete: robots serve as tools rather than doing things autonomously

nng

ex
from the robot

DLR’s Justin Robot Telesurgery (Da Vinci Robot) Stanford’s PR1 robot

All these systems show that we are not lacking in hardware rather the missing piece is clever software


http://www.youtube.com/watch?v=qBZPSTR96N4&t=13
http://www.youtube.com/watch?v=su0zDTyA2_0&t=100

Motivation: teaching robots skills

One way to think about the value of teleoperation system is to help provide demonstrations for teaching skills

Figure 3: Humanoid robot learning a forehand swing from a human demonstration.

Figure 1: The SARCOS robot arm with a pendulum |jspeert et al. 2003
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We will now cover contemporary work on using teleoperation to teach
skills to robots.

An expert operator teleoperates a robot to collect demonstrations that
show how to solve a particular task.

The data is logged in the form or state (or observations), action pairs
and used to learn the mapping from state (or observation) to the
corresponding action.

Various learning mechanisms: supervised learning (behaviour
cloning), RL, batch RL etc.

Learning is faster with demonstrations and the policies exhibit desired
human-like behaviours.



Learning Complex Dexterous Manipulation with Deep
Reinforcement Learning and Demonstrations

Figure 1: We demonstrate a wide range of dexterous manipulation
skills such as object relocation, in-hand manipulation, tool use, and
opening doors using DRL methods. By augmenting with human
demonstrations, policies can be trained in the equivalent of a few
real-world robot hours.

Collects human demonstrations of robot hand performing
these tasks in VR in MuJoCo.

Demonstrates, in simulation, dexterous manipulation with
high-dimensional human-like five-finger hands using
model-free DRL.

Shows that with a small number of human demonstrations,
the sample complexity can be reduced dramatically and
brought to levels which can be executed on physical
systems.

Policies trained with demonstrations are more human-like
as well as robust to variations in the environment.
Attributed this to human priors in the demonstrations which
bias the learning towards more robust strategies.



Learning Complex Dexterous Manipulation with Deep
Reinforcement Learning and Demonstrations

What happens if we don’'t use VR demonstrations? We can still learn but do the learned policies look natural?

Figure 8: Unnatural movements observed in the execution trace of
behavior trained with pure reinforcement leaning. From left to right:
(a) unnatural, socially unacceptable, finger position during pick up.

(b/c) unnatural grasp for hammer (d) unnatural use of wrist for
unlatching the door.

This is precisely why we need human demonstrations to provide the bias in learning the policies.



Learning Complex Dexterous Manipulation with Deep Reinforcement
Learning and Demonstrations, rajeswaran et al. 2018

What happens if we don’'t use VR demonstrations? We can still learn but do the learned policies look natural?
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This is precisely why we need human demonstrations to provide the bias in learning the policies.



http://www.youtube.com/watch?v=jJtBll8l_OM

Scaling data-driven robotics with reward sketching and
batch reinforcement learning, cabi et al. 2019

Collecting teleoperation demonstrations to guide the learning and annotating the reward functions
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https://sites.google.com/view/data-driven-robotics/


http://www.youtube.com/watch?v=3FfDRXrlWVs

Deep Imitation Learning for Complex Manipulation Tasks
from Virtual Reality Teleoperation, mccarthy et al. 2018

Fig. 1: Virtual Reality teleoperation in action

Inexpensive teleoperation system that
allows intuitive robotic manipulation and
collection of high-quality demonstrations
suitable for learning.

With high-quality demonstrations, can
imitation learning succeed in solving a
wide range of challenging manipulation
tasks using a practical amount of data?

VR teleoperation system on a real PR2
robot using consumer-grade VR devices.

For each task, < 30 minutes of
demonstration data is sufficient to learn a
successful policy, with the same
hyperparameters and neural network
architecture used across all tasks. 9



Deep Imitation Learning for Complex Manipulation Tasks
from Virtual Reality Teleoperation, mccarthy et al. 2018

Neural network used to map the input RGB-D frames to end-effector pose in 6D (pos + rotation)
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Fig. 3: Architecture of our neural network policies

They use basic supervised learning (also called behaviour cloning) to learn the policies. This work does not
use RL.
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Deep Imitation Learning for Complex Manipulation Tasks
from Virtual Reality Teleoperation, mccarthy et al. 2018

Tasks used in this work

(a) reaching (b) grasping (c) pushing - (d) plane (e) cube (f) nail  (g) grasp-and-place (h) grasp-drop-push (i) grasp-place-x2 () cloth

Fig. 4: Examples of successful trials performed by the learned policies during evaluation. Each column shows the image

inputs [; at t =0, %, T for the corresponding task.
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Deep Imitation Learning for Complex Manipulation Tasks
from Virtual Reality Teleoperation, mccarthy et al. 2018

View from inside VR
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http://www.youtube.com/watch?v=QkNNlfYG7kg

ROBOTURK: A Crowdsourcing Platform for Robotic Skill
Learning Through Imitation, mandlekar et al. 2018
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Figure 1: System overview of ROBOTURK. ROBOTURK enables quick imitation guided skill
learning. Our system consists of the following major steps: 1) specifying a task, 2) collecting a
large set of task demonstrations using ROBOTURK, 3) using demonstration-augmented reinforcement
learning to learn a policy, and 4) deploying the learned skill in the domain of interest.

Dataset consisting of over
2200 task demonstrations,
amounting to 137 hours of
data collected in 20 hours of
system usage with
contracted workers.

Data collected through
ROBOTURK enables policy
learning on challenging
manipulation tasks with
sparse rewards and that
using larger quantities of
demonstrations during
policy learning provides
benefits in terms of both
learning consistency and
final performance. 13



ROBOTURK: A Crowdsourcing Platform for Robotic Skill
Learning Through Imitation, mandlekar et al. 2018

Object Search Laundry Layout
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Fig. 1: Collecting data on physical robot arms with the Robo-
Turk platform. To collect task demonstrations, users connect to
our platform from remote locations using a web browser and use
their smartphone as a motion controller to move the physical robot
arm in free space. Users are provided a video stream of the robot
workspace in their web browser.

TABLE I: Dataset Comparison. We compare our dataset to similar robot datasets collected via human supervision in prior work. Items
marked with * are estimates that were extrapolated using other reported information, and interfaces marked with T are not real-time.

Name Interface Task Avg. Task Length (sec) Number of Demos  Total Time (hours)
JIGSAWS[10] daVinci surgery 60* 103 1.66
Deep Imitation [43] VR pick, grasp, align SE 1664 2.35
DAML[42] Human demos pick, place, push 5* 2941 4.08
MIME[34] Kinesthetic pick, place, push, pour 6* 8260 13.7*
PbDI[8] Gur' pick, place 207* 465 25.8%
Roboturk-Real (Our) iPhone AR long horizon object manip 186 2144 111.25
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ROBOTURK: A Crowdsourcing Platform for Robotic Skill
Learning Through Imitation, mandlekar et al. 2018
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https://docs.google.com/file/d/1QXT0GUgRx52s5bSnL5R4jR8sqmsP4DOl/preview

DexPilot: Vision based teleoperation of dexterous robotic
hand-arm system, handa et al. 2019

- Markerless, glove-free and entirely
vision-based teleoperation system that
dexterously articulates a highly actuated
robotic hand-arm system with direct
imitation.

- Demonstration of teleoperation system
on a wide variety of tasks particularly
involving  fine  manipulations  and
dexterity, e.g., pulling out paper currency
from wallet and grasping two cubes with
four fingers



http://www.youtube.com/watch?v=qGE-deYfb8I

System Overview

Allegro Hand

4x Intel Realsense
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The system is housed in a studio next to the robot

- We use Intel D415 cameras and
extrinsically calibrate them apriori using
standard calibration toolbox.

- The hand moves over the table covered
in black cloth.

- Given the calibration we can project the
point clouds from all the cameras into one
global reference frame.

- We assume line of sight driven
teleoperation. The user doesn’t wear any
VR headset.

- Because it’s line of sight driven, the user
has to be standing in close proximity to
the robot for better depth perception.
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Architecture
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Each thread runs on a different computer: we need 3 computers to run this, although 2 might suffice as well.



DexPilot: Some remarks on teleoperation

Large majority of these tasks are complicated and even simulators struggle to
simulate them. If we can teleop something, we have a lot more hope of doing this task
via imitation. Defining rewards is almost impossible for many of the tasks we do.

The fact the the system works despite any tactile feedback says a lot about how our
brains are able adapt to any tasks with vision only input.

- HaptX, a company that builds robot hand-arm teleoperation systems with tactile
feedback, told us that in their system the user only needed tactile feedback at
the start for a few trials but they naturally adapted to the tasks pretty quickly from
then on without needing any tactile feedback. It is quite an out-of-body experience.

When the user does reattempts e.g. to pick up a dropped object, the data still provides
valuable information about recovery from failures which the robots can learn from.
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BC-Z: Zero-Shot Task Generalization with Robotic
Imitation Learning, zhang & irpan et al. 2021
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Figure 1: Overview of BC-Z. We collect a large-scale dataset (25,877 episodes) of 100 diverse manipulation
tasks, and train a 7-DoF multi-task policy that conditions on task language strings or human video. We show
this system produces a policy that is capable of generalizing zero-shot to new unseen tasks.
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BC-Z: Zero-Shot Task Generalization with Robotic
Imitation Learning, zhang & irpan et al. 2021

- Interactive and flexible imitation learning system that can learn from both demonstrations and
interventions and can be conditioned on different forms of information that convey the task, including
pretrained embeddings of natural language or videos of humans performing the task.

- When scaling data collection on a real robot to more than 100 distinct tasks, we find that this system
can perform 24 unseen manipulation tasks with an average success rate of 44%, without any robot
demonstrations for those tasks.

Drag grapes across the table.
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Figure 1: Overview of BC-Z. We collect a large-scale dataset (25,877 episodes) of 100 diverse manipulation
tasks, and train a 7-DoF multi-task policy that conditions on task language strings or human video. We show
this system produces a policy that is capable of generalizing zero-shot to new unseen tasks. 21



BC-Z: Zero-Shot Task Generalization with Robotic
Imitation Learning, zhang & irpan et al. 2021
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Figure 3: BC-Z network architecture. A monocular RGB image from the head-mounted camera is passed
through a ResNet18 encoder, then through a two-layer MLP to predict each action modality (delta XYZ, delta
axis-angle, and gripper angle). FiLM layers [47] condition the architecture on a task embedding z computed
from language w; or video wp,. 29



BC-Z: Zero-Shot Task Generalization with Robotic
Imitation Learning, zhang & irpan et al. 2021

Table 2: Success rates for zero-shot (language) and few-shot (video) generalization to tasks not in
the training dataset. The first 4 tasks only use objects from the 79-task family. The remaining tasks
mix objects between the 21-task and 79-task families, requiring further generalization. Numbers in
parentheses are 1 unit standard deviation. The language conditioning generalizes to several holdout
tasks, whereas the video conditioning shows promise on tasks that do not mix objects between task
families. Overall performance improves slightly with fewer distractor objects.

Skill Held-out tasks Lang-conditioned Lang-conditioned Vid ditioned
(no demos during training) (1 distractor) (4-5 distractors) (4-5 distractors)
‘place sponge in tray’ 83% (6.8) 82% (9.2) 22% (2.2)
pick-place ‘place grapes in red bowl’ 87% (6.2) 75% (10.8) 12% (7.8)
‘place apple in paper cup’ 30% (8.4) 33% (12.2) 14% (7.8)
pick-wipe ‘wipe tray with sponge’ 40% (8.9) 0% (0) 28% (10.6)
‘place banana in ceramic bowl” 50% (15.8) 75% (9.7) 7.5% (4.2) grapes m_ HTIL‘ ol " :;’if‘-“’.g' }p“)'_lg‘.u g;_uP'd'- SPCA
‘place bottle in red bowl’ 50% (15.8) 75% (9.7) 0% (0) - - L SRR = s~ 2
‘place grapes in ceramic bowl’ 70% (14.5) 70% (10.3) 0% (0)
‘place bottle in table surface’ 0 50% (11.2) 5% (3.5)
‘place white sponge in purple bowl’ 70% (14.9) 45% (11.2) 0% (0)
pick-place ‘place white sponge in tray’ 50% (15.8) 40% (11.0) 0% (0)
‘place apple in ceramic bow!’ 30% (14.5) 20% (8.9) 0% (0)
‘place bottle in purple bowl’ 30% (14.5) 20% (8.9) 0% (0)
‘place banana in ceramic cup’ 10% (9.5) 0% (0) 0% (0)
‘place banana on white sponge’ 40% (15.5) 0% (0) 0% (0)
‘place metal cup in red bowl’ 0% (0) 0% (0) 0% (0)
‘pick up grapes’ 70% (14.5) 65% (10.7) 0% (0) pli)'
‘pick up apple’ 20% (12.7) 55% (11.2) 5% (3.5) =
‘pick up towel” 50% (15.8) 42.8% (18.7) 0% (0) bowl
grasp ‘pick up pepper’ 50% (15.8) 35% (10.7) 12.5% (5.2)
‘pick up bottle’ 40% (15.5) 30% (10.3) 17.5% (6.0)
‘pick up the red bowl’ 30% (14.5) 0% (0) 0% (0)
pick-drag ‘drag grapes across the table’ 0% (0) 14% (13.2) 0% (0)
‘wipe table surface with banana’ 0% (0) 10% (6.7) 0% (0)
pick-wipe ‘wipe tray with white sponge’ 20% (12.7) 0% (0) 0% (0)
‘wipe ceramic bowl with brush’ 10% (9.49) 0% (0) 0% (0)
‘push purple bowl across the table’ 50% (15.8) 30% (10.3) 0% (0)
push ‘push tray across the table’ 30% (14.5) 25% (9.7) 0% (0)
‘push red bowl across the table’ 60% (15.5) 0% (0) 0% (0)

Holdout Task Overall 38% 32% 4%



http://www.youtube.com/watch?v=f-9Jw3KvPJo

CLIPort: What and Where Pathways for Robotic
Manipulation, Shridhar et al, 2021

* put the red blocks in the green bowl *

Figure 8. Real-Robot Experimental Setup.
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http://www.youtube.com/watch?v=UdzoagBgWTA

Closing Remarks

- Teleoperation is a great way to direct the behaviour of policies to enable
human-like operations.

- Although time consuming and not scalable, teleoperation still offers a way to
speed up the learning process.

- Better teleoperation tools and systems will enable faster and scalable data
collection.

- Policies should copy high-level behaviours than low-level trajectories.
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Thank you



