CS 6334.001 Virtual Reality Homework 4

Professor Yu Xiang

November 10, 2021

Problem 1

(2 points)
Convolutional Layers.
Suppose the input of a convolutional layer is a tensor with height $h=16$, width $w=64$ and channel $c=3$. We can say the shape of the input tensor is $h \times w \times c$. The convolutional layer has 32 filters with shape $5 \times 5 \times 3$ with padding 2 and stride 3 .
(1) What is the shape of the output tensor for this convolutional layer?
(2) What is the total number of parameters in this layer?

Problem 2

(2 points)

Forward Kinematics.
Figure 1(a) shows a two-link planner arm in 2D. Link 1 has length a_{1} and Link 2 has length a_{2}. The coordinate frame $\left(x_{0}, y_{0}\right)$ denote the base frame, i.e., world frame of the arm.

Figure 11b) also shows the local coordinate frames of the two links with joint angles θ_{1} and θ_{2}.
Compute the coordinates of the gripper center (see the blue dot in Figure 1 (a)) in the base frame using forward kinematics.

Figure 1: Illustration of a two-link planner arm in 2D

Problem 3

(2 points)
Transfer Function.
Let $y(t)$ be a continuous-time signal. The Laplace transform of $y(t)$ is defined as

$$
\begin{equation*}
Y(s)=\int_{-\infty}^{\infty} y(t) e^{-s t} d t \tag{3.1}
\end{equation*}
$$

Now, let's assume that the signal $y(t)$ is generated by convolution:

$$
\begin{equation*}
y(t)=\int_{-\infty}^{\infty} u(\tau) h(t-\tau) d \tau \tag{3.2}
\end{equation*}
$$

where we can interpret $u(t)$ as an input signal, and $h(t)$ is a filter applied to $u(t)$.
Apply Laplace transform to Eq. (3.2) and show that $Y(s)=U(s) H(s)$, where $U(s)$ and $H(s)$ are the Laplace transform of $u(t)$ and $h(t)$, respectively.
(Hint) Consider changing variable by $t-\tau=\eta$ in integral.

Problem 4

(4 points)
RANSAC.
Download the homework4_programming.zip file from eLearning, Assignments, Homework 4. Implement the ransac() function in ransac.py for estimating the parameters of a 2 D line given a set of data samples.

After your implementation, run the ransac.py in Python. Figure 2 shows an example of running the script. Submit your script to eLearning, and TA will run your script to verify it.

Here are some useful resources:

- Python basics https://pythonbasics.org/
- Numpy https://numpy.org/doc/stable/user/basics.html

Figure 2: Example of running of the ransac.py script

