# CS 6334.001 Virtual Reality Homework 2 

Professor Yu Xiang

September 29, 2021

## Problem 1

## (2 points) Convex Lens.

In Figure 1 an object with height $h_{1}$ and distance $s_{1}$ from a thin convex lens is imaged to the other side of the lens. The focal length of the lens is $f$. The image of the object is with height $h_{2}$ and distance $s_{2}$ from the lens. Show that

$$
\begin{equation*}
\frac{1}{s_{1}}+\frac{1}{s_{s}}=\frac{1}{f} \tag{1.1}
\end{equation*}
$$

(Hint) Apply triangle similarity theorems. Consider the relationship between height and distance first.


Figure 1: Imaging process of a thin convex lens

## Problem 2

(2 points) Barycentric Coordinates.
Let $\mathbf{p}_{1}=\left(x_{1}, y_{1}, z_{1}\right)^{T}, \mathbf{p}_{2}=\left(x_{2}, y_{2}, z_{2}\right)^{T}$ and $\mathbf{p}_{3}=\left(x_{3}, y_{3}, z_{3}\right)^{T}$ be three vertices of a triangle as shown in Figure 2 Let $\mathbf{p}=(x, y, z)^{T}$ be a 3D point inside the triangle. Then $\mathbf{p}$ can be expressed using its barycentric coordinates

$$
\begin{equation*}
\mathbf{p}=\alpha_{1} \mathbf{p}_{1}+\alpha_{2} \mathbf{p}_{2}+\alpha_{3} \mathbf{p}_{3} \tag{2.1}
\end{equation*}
$$

where $0 \leq \alpha_{1}, \alpha_{2}, \alpha_{3} \leq 1$ and $\alpha_{1}+\alpha_{2}+\alpha_{3}=1$. Show that

$$
\begin{align*}
& \alpha_{1}=\frac{\left(y_{2}-y_{3}\right)\left(x-x_{3}\right)+\left(x_{3}-x_{2}\right)\left(y-y_{3}\right)}{\left(y_{2}-y_{3}\right)\left(x_{1}-x_{3}\right)+\left(x_{3}-x_{2}\right)\left(y_{1}-y_{3}\right)},  \tag{2.2}\\
& \alpha_{2}=\frac{\left(y_{3}-y_{1}\right)\left(x-x_{3}\right)+\left(x_{1}-x_{3}\right)\left(y-y_{3}\right)}{\left(y_{2}-y_{3}\right)\left(x_{1}-x_{3}\right)+\left(x_{3}-x_{2}\right)\left(y_{1}-y_{3}\right)}, \\
& \alpha_{3}=1-\alpha_{1}-\alpha_{2} .
\end{align*}
$$

(Hint) Build a linear system of $\alpha_{1}, \alpha_{2}$ and then apply Cramer's rule to solve it. Do not follow slide 6 in lecture 7. I think these equations from the VR textbook may not be correct.


Figure 2: Illustration of barycentric coordinates

## Problem 3

(2 points) Fundamental Matrix.
Let's consider a stereo camera rig with the world origin at the first camera. The second camera is translated by $t_{x}$ along the $x$-axis from the first camera as shown in Figure 3. The projection matrices of the two cameras are

$$
\begin{align*}
P & =K[I \mid \mathbf{0}]  \tag{3.1}\\
P^{\prime} & =K[I \mid \mathbf{t}], \tag{3.2}
\end{align*}
$$

where $I$ is a $3 \times 3$ identity matrix and $\mathbf{t}=\left(t_{x}, 0,0\right)^{T}$ is the translation of the right camera, and $K$ is the camera intrinsic matrix:

$$
K=\left[\begin{array}{ccc}
f_{x} & 0 & p_{x}  \tag{3.3}\\
0 & f_{y} & p_{y} \\
0 & 0 & 1
\end{array}\right]
$$

Show that the fundamental matrix of this stereo rig is

$$
F=\left[\begin{array}{ccc}
0 & 0 & 0  \tag{3.4}\\
0 & 0 & -f_{x} t_{x} \\
0 & f_{x} t_{x} & 0
\end{array}\right] .
$$

(Hint) The pseudoinverse of $P$ is

$$
P^{+}=\left[\begin{array}{c}
K^{-1}  \tag{3.5}\\
\mathbf{0}^{T}
\end{array}\right]
$$



Figure 3: A stereo camera rig

## Problem 4

(4 points)
Download the homework2_programming.zip file from eLearning, Assignments, Homework 2. Implement backprojection of pixels in the get_observation() function in table_scene_rendering.py. After your implementation, run the table_scene_rendering.py in Python. Figure 4 shows an example of running the script. Submit your script to eLearning, and TA will run your script to verify it.

Here are some useful resources:

- Python basics https://pythonbasics.org/
- PyBullet https://pybullet.org/wordpress/
- Numpy https://numpy.org/doc/stable/user/basics.html


Figure 4: Example of running of the table_scene_rendering.py script

