CS 6334.001 Virtual Reality Homework 1

Professor Yu Xiang

August 31, 2021

Problem 1

(2 points)

Derivation of Rodrigues' rotation formula.

(1.1) Let $\mathbf{v} \in \mathbb{R}^3$ be a vector in 3D, and $\mathbf{k} \in \mathbb{R}^3$, $\|\mathbf{k}\| = 1$ be a unit vector describing an axis of rotation. If we rotate \mathbf{v} around \mathbf{k} by an anlge θ , show that the rotated vector \mathbf{v}_{rot} is

$$\mathbf{v}_{\rm rot} = \mathbf{v}\cos\theta + (\mathbf{k} \times \mathbf{v})\sin\theta + \mathbf{k}(\mathbf{k} \cdot \mathbf{v})(1 - \cos\theta). \tag{1.1}$$

(1.2) Show that if $v_{rot} = Rv$, then

$$\mathbf{R} = \mathbf{I} + (\sin\theta)\mathbf{K} + (1 - \cos\theta)\mathbf{K}^2, \qquad (1.2)$$

where

$$\mathbf{K} = \begin{bmatrix} 0 & -k_z & k_y \\ k_z & 0 & -k_z \\ -k_y & k_x & 0 \end{bmatrix}$$
(1.3)

is the cross-product matrix of $\mathbf{k} = (k_x, k_y, k_z)^T$.

(Hint) Read the derivation in Wikipedia, understand it and write down your answer based on your understanding.

Problem 2

(2 points)

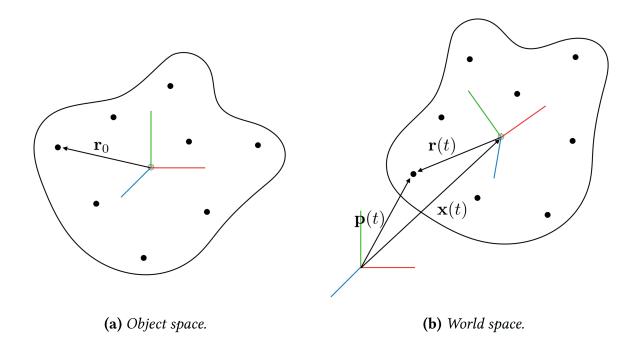


Figure 1: (a) A rigid body in its object space. (b) The rotated rigid body at time t in the world space.

Figure 1 shows a rigid body in its object space and in the world space, respectively.

(2.1) For a rigid body with N particles, let the particle positions in the world space be $\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_N$, and the masses of the particles be m_1, m_2, \dots, m_N . Compute the center of mass \mathbf{x} of the rigid body in the world space.

(2.2) Assume the origin of the object space is the center of mass of the rigid body. Let $\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N$ be the vectors from the center of mass to each particle in the world space as shown in Figure 1(b). Show that

$$\sum_{i=1}^{N} m_i \mathbf{r}_i = 0.$$
 (2.1)

Problem 3

(3 points)

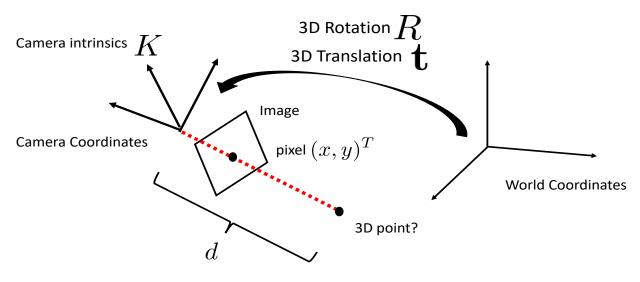


Figure 2: Backprojection of a pixel

Suppose a pinhole camera has a camera intrinsic matrix *K*. Let the camera extrinsics be a 3D rotation *R* and a 3D translation t. Given a pixel $(x, y)^T$ in an image, assume the depth of the pixel is *d*, where depth is the distance between the 3D point of pixel and the camera center. Compute the coordinates of the 3D point in the world coordinate system.

Problem 4

(3 points)

Download the homework1_programming.zip file from eLearning, Assignments, Homework 1. Implement the randomly_place_objects() function in table_scene.py.

Run the table_scene.py in Python. Make sure the mug drops onto the table in the beginning, then random forces can be applied to the mug. Figure 3 shows an example of running the script. Submit your script to eLearning, and TA will run your script to verify it.

Here are some useful resources:

- Python basics https://pythonbasics.org/
- PyBullet https://pybullet.org/wordpress/

Figure 3: Example of running of the table_scene.py script