
Carrybox with Ros Vacuum Gripper Plugin

Team 6: Jiyuan(Leo) Luo, Siqi Ye, Huiwen(Ella) Xue



Agenda

1. Introduction

2. Design

3. Solutions

4. Demo

5. Q&A

6. Reference



Introduction - Project Background and Motivation

The Need for Automation:

● the pressing need for flexible, intelligent automation in sectors such as logistics, warehousing, and manufacturing, 

where efficiency, cost reduction, and operational safety are top priorities. 

● With the rise of e-commerce and the increasingly complex demands placed on supply chain infrastructure, there is 

a growing demand for systems that can seamlessly adapt to dynamic workloads and diverse handling requirements.

Challenges in Current Systems:

● Conventional material-handling technologies often lack the necessary flexibility to handle a variety of objects without 

complex reconfiguration, making it challenging to maintain throughput and reliability in high-mix environments.

Project Motivation:

● Develop a system to seamlessly adapt to dynamic workloads.

● Address the growing demand for systems with universal handling capabilities.



Introduction - Project Solution Overview

System Design Goals:

● Designing a system capable of securely grasping, lifting, and transporting a range of box sizes and shapes with 

minimal setup and consistent accuracy.

Key Features:

● Vacuum Gripper:

○ The need for a universal handling tool

● ROS Framework:

○ Enhances control, modularity, and scalability

○ Allows the system to evolve as requirements change.

Impact:

● Improved efficiency and reliability.

● Reduced operational costs and enhanced safety.



Design - Robot Design and Implementation

Robot Arm Control:

● Utilized the Universal Robot GitHub repository to access the control package.

● Enabled basic motion and control functionalities for the robotic arm.

Vacuum Gripper:

● Found a ready-to-use plugin on GitHub, simplifying development.

● Designed a cylindrical structure for the gripper:

○ Connected to the end of the robotic arm.

○ Facilitated efficient grasping and transportation of boxes.



Before After

Offset Issue and Solution:

● Initial setup revealed a gap between the gripper and arm.

● Research identified the gripper's coordinate frame at the center of the 0.05m cylinder.

● Added a -0.025m Z-axis offset to align the gripper properly.

● Result: Stable connection and accurate simulations.

Design - Robot Design and Implementation



Design - World Design and Customization

Initial Setup:

● Used objects from the Gazebo simulation library.

● Drag-and-drop placement of objects to create the 

initial environment.

Customization:

● Modified the setup to meet project requirements.

● Created the first iteration of the simulation 

environment.

Outcome:

● A functional environment for testing and validating 

the robot’s grasping and transportation tasks.



Continue - box design and better world

Customization:

- improved initial testing world file

- add box model into gazebo world



Add box model into gazebo

Initial Setup:

● Make your box model SDF file 

● Use program to add box model into gazebo world



Config moveit

● Setup base / tip link

● check number of joints in your group

● This will generate a whole new packages



Code and File



How to Control the Vacuum Gripper in ROS

Overview:

● ROS Services are defined by srv files, which contains a request message and a response message. These are identical to the 

messages used with ROS Topics (see rospy message overview).

● You call a service by creating a rospy.ServiceProxy with the name of the service you wish to call. You often will want to call 

rospy.wait_for_service() to block until a service is available.

Key Steps to Control the Vacuum Gripper:

1. Service Availability Check:

○ Before using a service, ensure it is active and available to avoid errors.

○ This is similar to "subscribing" in the sense that you wait until the service is ready.

2. Service Invocation:

○ Once the service is available, you invoke it using predefined commands:

■ Turn On: Activates the vacuum gripper.

■ Turn Off: Deactivates the vacuum gripper.

https://wiki.ros.org/Services
https://wiki.ros.org/srv
https://wiki.ros.org/Topics
https://wiki.ros.org/rospy/Overview/Messages


demo: current state

What we have accomplished so far 

includes completing the initial phase of 

motion planning, successfully 

dropping the box into the correct 

location, and activating the vacuum 

gripper. However, we are 

encountering issues with the plugin.

We believe the joint tag is currently set 

to fixed, which may not be the most 

suitable option. Using a revolute joint 

could be more appropriate. However, 

the revolute joint requires a limit tag, 

where the lower and upper bounds 

must be properly configured.



Error



Next Steps:

● Debug the vacuum gripper to ensure it successfully grips the object.

● Verify the properties of the revolute joint and set appropriate limit 

boundaries.

● Complete the final step by moving to the target position and placing the 

object in the designated drop box.



Lessons and Learnings

● Ensure your virtual machine has sufficient RAM to maintain a real-time 

factor as close to 1 as possible.

● position control is mush easier than effort control since we do not need 

to set force or torque for each joint

● Ensure the design is simple and easy to test, allowing for efficient focus 

on motion planning and testing



Q & A?


	Slide 1: Carrybox with Ros Vacuum Gripper Plugin
	Slide 2: Agenda
	Slide 3: Introduction - Project Background and Motivation
	Slide 4: Introduction - Project Solution Overview
	Slide 5: Design - Robot Design and Implementation
	Slide 6: Design - Robot Design and Implementation
	Slide 7: Design - World Design and Customization
	Slide 8: Continue - box design and better world
	Slide 9: Add box model into gazebo
	Slide 10: Config moveit
	Slide 11: Code and File
	Slide 12: How to Control the Vacuum Gripper in ROS
	Slide 13: demo: current state
	Slide 14: Error
	Slide 15: Next Steps:
	Slide 16: Lessons and Learnings
	Slide 17: Q & A?

