
Dynamic Object Sorting &
Placement Using Grasping

By - Atharva Kulkarni, Gayatri Mangire, Aryan Solanki

Objective

Goal: Develop a system for autonomous object sorting and placement.

Focus: Realistic simulation, robust vision processing, and efficient robot operations.

Environment Setup

Simulation in Gazebo:

● Launch File Features:
○ Configures Gazebo model paths and environment variables.
○ Includes arguments for customizing world setup and robot behavior.
○ Loads the Gazebo world and integrates the Fetch robot with flexibility for various needs.

Defining Models:

● Models structured using model.config (metadata) and model.sdf (links, joints, poses).
● Models used: Box (capacity labels), Cafe Table, and Cubes.

World Configuration:

● Specifies layout, ground, lighting, and interactive objects in the virtual environment.
● Configurations inspired by SceneReplica Paper (IRVL UTD) for cube placement.

Key Components:

○ Box, cube, and table models with precise physical properties.
○ Uniform lighting and strategic robot placement.

● Key Steps:
○ Image Acquisition: High-resolution images via Fetch robot's camera.
○ Preprocessing: Grayscale conversion, thresholding, and ROI cropping using

OpenCV.
○ OCR with Tesseract: Extract numerical capacities

placement logic.

● Output: Centralized dictionary of box capacities

for decision-making.

Box Capacity Detection

Grasp Planning

Planning for Object Interaction:

● Uses TRAC-IK for inverse kinematics to compute joint trajectories.

● Adjusts rotation and translation matrices for accurate grasping (e.g., rotY, ros_pose_to_rt).

● Computes pose transformations for precise object handling.

Pre-Grasp Positioning:

● Calculates safe pre-grasp positions using offset translations.

● Positions the arm with MoveGroupInterface for effective grasping.

Collision Detection:

● Ensuring Safety: Defines objects with CollisionObject messages.

● Configures object dimensions and poses for collision-free motion.

● Publishes collision objects to /collision_object topic, ensuring accuracy through publisher delays.

Robot Motion Control

Motion Planning Techniques:

● move_group.moveToPose:

○ Moves robot to a target pose in Cartesian space, defined by position and orientation.

● move_group.moveToJointPosition:

○ Directly sets target joint angles for precise arm configurations.

Why Use MoveGroupInterface?

● Designed for modern ROS workflows with active support.

● Offers streamlined and optimized APIs for efficient motion planning compared to older alternatives like

MoveGroupCommander.

Execution Features:

● Provides smoother trajectories and collision-free movements.

● Ensures reliable and repeatable robot operations.

Key Results

● Achievements:

○ Accurate OCR-based capacity detection.

○ Stable grasping and object handling.

○ Efficient sorting and placement in dynamic scenarios.

Conclusion & Future Work

● Conclusion:

○ Demonstrated a robust and scalable robotic sorting system.

● Future Scope:

○ Integration in real-world industrial setups.

○ Enhancements in dynamic adaptability and clutter handling.

	Slide 1: Dynamic Object Sorting & Placement Using Grasping
	Slide 2: Objective
	Slide 3: Environment Setup
	Slide 4: Box Capacity Detection
	Slide 5: Grasp Planning
	Slide 6: Robot Motion Control
	Slide 7: Key Results
	Slide 8: Conclusion & Future Work

