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Problem

Object manipulation is hard




Another Problem ‘1

Teleoperation takes a
lot of time or use
custom hardware




Aims

- Learn to manipulate objects according to a goal specified in language without
teleoperated demonstrations.

Task: pick up the black bowl from tab

Task: pick up the black bowl bet the plate and
ask: pick up the black bowl between the plate an place it on the plate

the ramekin and place it on the plate



Prior Works

- Sparse Reward
- Initializing closer to the goal to allow for better exploration [2]
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- Dense Task Specific Rewards

- Create task specific rewards that utilize some attribute that is task specific
compute a distance such as tool distance or hand distance




Framework
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Reward Formulation
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Training Environments

- Our policy is trained with the LIBERO Environment [3] in the MuJuCo Simulator
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Demo of RL



https://docs.google.com/file/d/1PomsbxLBxZIY2bLp7s-pH-mzOzoFFwJ4/preview

Next Steps

- Use segmentation mask to determine best points to predict
- Try larger policy architecture
- Use an additional unsupervised exploration technique
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