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Motivation
« Leverage large visual-language model, such as CLIP[1], on robotic grasping

* Robustness on text prompt corruptions: prompt engineering

L anguage-conditioned tasks:

Pack all the blue and black
sneaker objects in the brown box

Pack all the yellow and blue
blocks in the brown box

Examples from CLIP:

Caltech101 Prompt Accuracy Flowers102 Prompt Accuracy
a [CLASS]. 82.68 a photo of a [CLASS]. 60.86
a photo of [CLASS]. 80.81 a flower photo of a [CLASS)]. 65.81
a photo of a [CLASS]. 86.29 a photo of a [CLASS], a type of flower. 66.14
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Motivation

packing box pairs:
all the blue and green bIocs Template 1 Template 3

Fail X Success
Text Prompt Task success scores (%)
1. 'pack all the [colors] blocks'; 90.5
2. 'pack all the [colors] blocks into the box'; 92.1
3. 'pack all the [colors] blocks into the brown box.". 971
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Problem Formulation (based on CLIPORT[1])

» Objective: Learn a goal-conditioned policy = that outputs actions a; based on inputs:

-Vt = (Ot,lt), where:
« 04 Visual observation.
= 1,2 English language instruction.

* Policy Definition:
(o, 1) — a = (%ick;%lace) cA

— a;: End-effector poses for:
* %ick: Picking.
+ Tolace: Placing.

» Task Focus: Tabletop tasks where:
— Tpick, Tplace € SE(2).
* Visual Observations:

— Top-down orthographic RGB-D reconstructions.
— Each pixel corresponds to a point in 3D space.
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Problem Formulation

« Language Instructions:

— Single goal descriptions:
+ Example: “Pack all the blue and yellow boxes in the brown box.”

+ Dataset D:

— n expert demonstrations:

D= {C19C27"'7C'n}'

— Each demonstration ¢; contains input-action pairs:
C,; = {(01, 11, al), (02, 12, az), . }
— Actions a; = (Tpick, Tplace): Expert pick-and-place coordinates.

« Supervision: Expert demonstrations are used to train the policy .
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Foundational work
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An overview of the semantic and spatial streams of foundation work CLIPORTI1].
What we did for the missing color environment is in red.
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Transporter for Pick-and-Place

« Overview: Policy 7 is trained using Transporter [2] for spatial manipulation.

— Two stages:
1. Attend to a local region to determine the pick location.
2. Compute the placement location using cross-correlation of deep visual features.
* Policy Components:

— Two action-value modules (Q-functions):

* Opick: Identifies the pick location.
* Qpiace: Determines the placement location conditioned on the pick action.

* Place Module:

— Query FCN ®g¢ry processes:

* ¢ [Toick]: ¢ x ¢ crop around Tpick.
« 1;: Language instruction.

— Key FCN &, processes full input ~;.
— Placement action-values Qpjace:

Qplace (A’Fh’ta 7;>ick) = (‘I)query (")’t [%ick]) * (I)key('Yt)) [AT]
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Prompt Tuning

Qplace(AThta %ick) = ((I)query(')’t [%ick]) X ‘Dkey(’)’t)) [AT]

The prompts are appended as additional dimensions to the query and key embeddings
Mathematical Formulation:

Duery = concat(Pquery (vt [Tpick])s Pauery, dim = —1)
<I>key = concat(®Pgey (7t ), Prey,dim = —1)
Dimensionality Impact:
* Pyuery € ReX¢¥40: 4, represents the prompt-specific channels.
o By € RT*Wxdr: Matches the spatial dimensions of the key embedding.
The new dimensions become:

e REXeX (d+dp)

€ RHxWx (d+dp)

Updated version: pIace(ATh/tv 7E)|ck) ((I)g]uery (’Yt [’E)ick]) * (I){(ey (%)) [AT]
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Task Detalls

multi-step unseen unseen language

Task sequencing colors objects instruction
1. packing-seen-google-objects-seq® v X X step
2. packing-unseen-google-objects-seq® v v v step
3. packing-seen-google-objects-group™$ X X X goal
4. packing-unseen-google-objects-group™*® X v v goal

Stasks that are commonly found in industry.
*tasks that have more than one correct sequence of actions.

» Selected Tasks:

— 4 out of 10 language-conditioned tasks from the Ravens benchmark set [2].
— All tasks involve:

= Precise placing.

« Multimodal placing.
Other Training details:
Simulation environments (Ravens with PyBullet)
The foundation model is frozen, only the prompts
are trained

* Language Templates for Training:

— Language instructions are distributed evenly across three templates:
» Template 1: ’pack all the [colors] blocks’.
= Template 2: >pack all the [colors] blocks into the box’.
» Template 3: >pack all the [colors] blocks into the brown box’.
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ReS u ItS Task Seen Color Unseen Color Unseen Color w/ Prompt Tuning

Task1 81.54% 71.87% 73.03%
Task2 66.67% 56.21% 56.46%
Task3 97.49% 91.66% 96.50%
Task4 72.82% 52.04% 60.73%
1001 wwm seen Color | 97.49% " 96.50%

B Unseen Color
I Unseen Color w/ Prompt Tuning

56.21% 56.46%

Accuracy (%)

Task 1 Task 2 Task 3 Task 4
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Demo
Task: Pack all the 'objects' in the brown box

Pack all the red cups
In the brown box

Pack all the red cups in the box

Pack all the red cups in the box w/ Prompt Tuning

Seen Color Unseen Color Unseen Color w/ Prompt Tuning
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Thanks Everyone!
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