

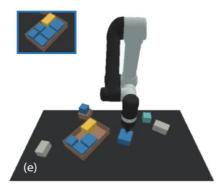
Enhancing Language-Conditioned Robotic Manipulation through Prompt Tuning in a Missing Color Environment

Baoming Zhang, Ouyang Xu

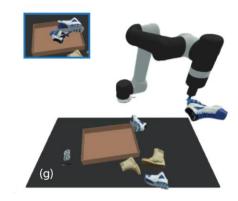
Motivation

- Leverage large visual-language model, such as CLIP[1], on robotic grasping
- Robustness on text prompt corruptions: prompt engineering

Language-conditioned tasks:



Pack all the yellow and blue blocks in the brown box



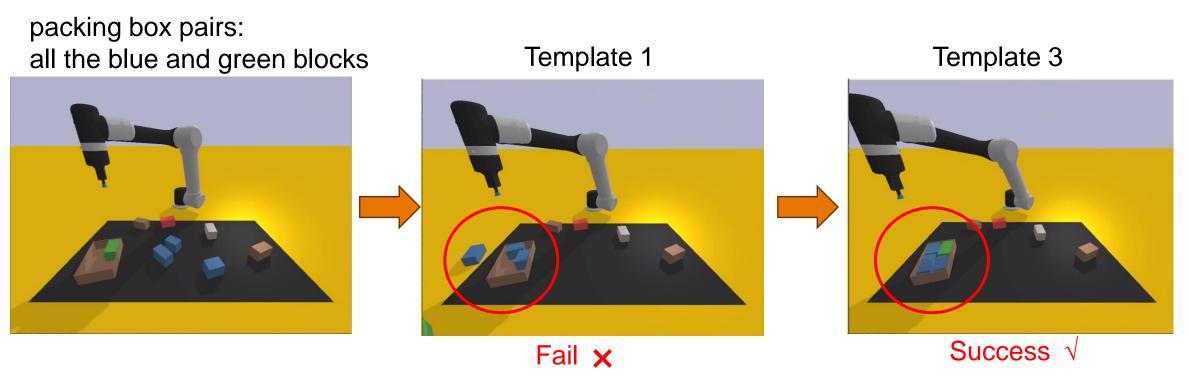
Pack all the blue and black sneaker objects in the brown box

Examples from CLIP:

Prompt	Accuracy
a [CLASS].	82.68
a photo of [CLASS].	80.81
a photo of a [CLASS].	86.29

Prompt	Accuracy
a photo of a [CLASS].	60.86
(I	C= 04
a flower photo of a [CLASS].	65.81
a photo of a [CLASS], a type of flower.	66.14

Motivation



Text Prompt	Task success scores (%)
1. 'pack all the [colors] blocks';	90.5
2. 'pack all the [colors] blocks into the box';	92.1
3. 'pack all the [colors] blocks into the brown box.'.	97.1

Problem Formulation (based on CLIPORT[1])

- **Objective**: Learn a goal-conditioned policy π that outputs actions \mathbf{a}_t based on inputs:
 - $\gamma_t = (\mathbf{o}_t, \mathbf{l}_t)$, where:
 - * o_t: Visual observation.
 - * l_t : English language instruction.
- Policy Definition:

$$\pi(\mathbf{o}_t, \mathbf{l}_t) o \mathbf{a}_t = (\mathcal{T}_{\mathsf{pick}}, \mathcal{T}_{\mathsf{place}}) \in \mathcal{A}$$

- \mathbf{a}_t : End-effector poses for:
 - * \mathcal{T}_{pick} : Picking.
 - * \mathcal{T}_{place} : Placing.
- **Task Focus**: Tabletop tasks where:
 - \mathcal{T}_{pick} , $\mathcal{T}_{place} \in \mathbf{SE}(2)$.
- Visual Observations:
 - Top-down orthographic RGB-D reconstructions.
 - Each pixel corresponds to a point in 3D space.

Problem Formulation

- Language Instructions:
 - Single goal descriptions:
 - * Example: "Pack all the blue and yellow boxes in the brown box."

- Dataset D:
 - n expert demonstrations:

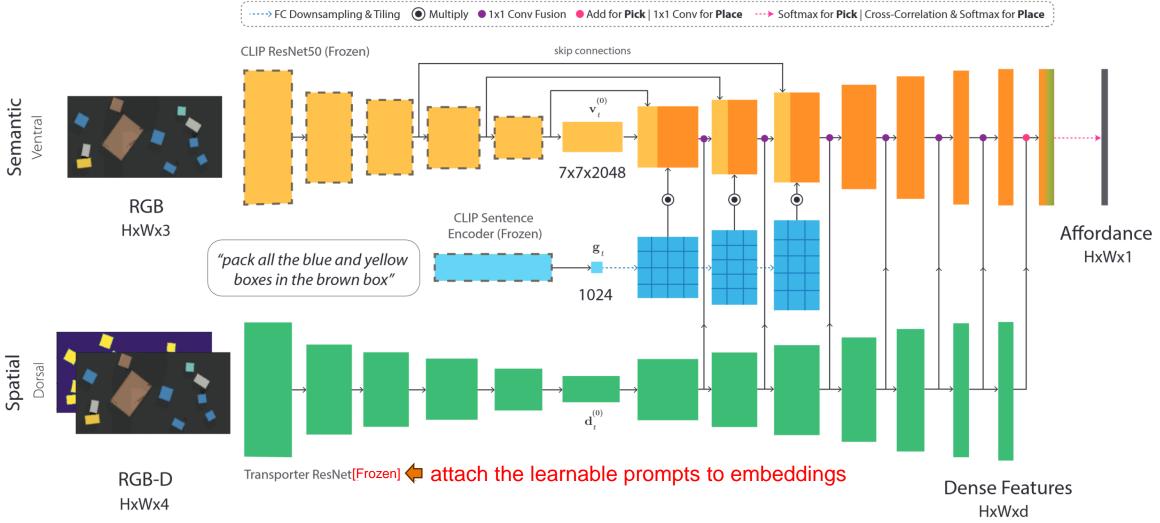
$$\mathcal{D} = \{\zeta_1, \zeta_2, \dots, \zeta_n\}.$$

- Each demonstration ζ_i contains input-action pairs:

$$\zeta_i = \{(\mathbf{o}_1, \mathbf{l}_1, \mathbf{a}_1), (\mathbf{o}_2, \mathbf{l}_2, \mathbf{a}_2), \ldots\}.$$

- Actions $\mathbf{a}_t = (\mathcal{T}_{pick}, \mathcal{T}_{place})$: Expert pick-and-place coordinates.
- **Supervision**: Expert demonstrations are used to train the policy π .

Foundational work



An overview of the semantic and spatial streams of foundation work CLIPORT[1]. What we did for the missing color environment is in red.

Transporter for Pick-and-Place

- Overview: Policy π is trained using Transporter [2] for spatial manipulation.
 - Two stages:
 - 1. Attend to a local region to determine the pick location.
 - 2. Compute the placement location using cross-correlation of deep visual features.

Policy Components:

- Two action-value modules (Q-functions):
 - * Q_{pick} : Identifies the pick location.
 - * Q_{place} : Determines the placement location conditioned on the pick action.

Place Module:

- Query FCN ⊕query processes:
 - * $\gamma_t[\mathcal{T}_{\mathsf{pick}}]$: $c \times c$ crop around $\mathcal{T}_{\mathsf{pick}}$.
 - * l_t : Language instruction.
- Key FCN Φ_{key} processes full input γ_t .
- Placement action-values Q_{place} :

$$\mathcal{Q}_{\mathsf{place}}(\Delta\tau|\gamma_t,\mathcal{T}_{\mathsf{pick}}) = \big(\Phi_{\mathsf{query}}(\pmb{\gamma}_t[\mathcal{T}_{\mathsf{pick}}]) * \Phi_{\mathsf{key}}(\pmb{\gamma}_t)\big)[\Delta\tau]$$

Prompt Tuning

$$\mathcal{Q}_{\mathsf{place}}(\Delta\tau|\gamma_t,\mathcal{T}_{\mathsf{pick}}) = \big(\Phi_{\mathsf{query}}(\boldsymbol{\gamma}_t[\mathcal{T}_{\mathsf{pick}}]) * \Phi_{\mathsf{key}}(\boldsymbol{\gamma}_t)\big)[\Delta\tau]$$

The prompts are appended as additional dimensions to the query and key embeddings **Mathematical Formulation**:

$$\begin{split} \Phi_{\mathsf{query}}' &= \mathsf{concat}(\Phi_{\mathsf{query}}(\gamma_t[\mathcal{T}_{\mathsf{pick}}]), P_{\mathsf{query}}, \mathsf{dim} = -1) \\ \Phi_{\mathsf{key}}' &= \mathsf{concat}(\Phi_{\mathsf{key}}(\gamma_t), P_{\mathsf{key}}, \mathsf{dim} = -1) \end{split}$$

Dimensionality Impact:

- $P_{\mathsf{query}} \in \mathbb{R}^{c \times c \times d_p}$: d_p represents the prompt-specific channels.
- $P_{\text{key}} \in \mathbb{R}^{H \times W \times d_p}$: Matches the spatial dimensions of the key embedding.

The new dimensions become:

$$\Phi_{\mathsf{query}}' \in \mathbb{R}^{c imes c imes (d + d_p)} \ \Phi_{\mathsf{kev}}' \in \mathbb{R}^{H imes W imes (d + d_p)}$$

 $\label{eq:policy} \text{Updated version:} \ \ \mathcal{Q}'_{\text{place}}(\Delta\tau|\gamma_t,\mathcal{T}_{\text{pick}}) = \big(\Phi'_{\text{query}}(\gamma_t[\mathcal{T}_{\text{pick}}]) * \Phi'_{\text{key}}(\gamma_t)\big)[\Delta\tau]$

Task Details

Task	multi-step sequencing			language instruction
1. packing-seen-google-objects-seq§	√	X	X	step
2. packing-unseen-google-objects-seq§	1	1	✓	step
3. packing-seen-google-objects-group*§	×	X	X	goal
4. packing-unseen-google-objects-group*§	×	/	/	goal

§tasks that are commonly found in industry.

*tasks that have more than one correct sequence of actions.

Selected Tasks:

- 4 out of 10 language-conditioned tasks from the Ravens benchmark set [2].
- All tasks involve:
 - * Precise placing.
 - * Multimodal placing.

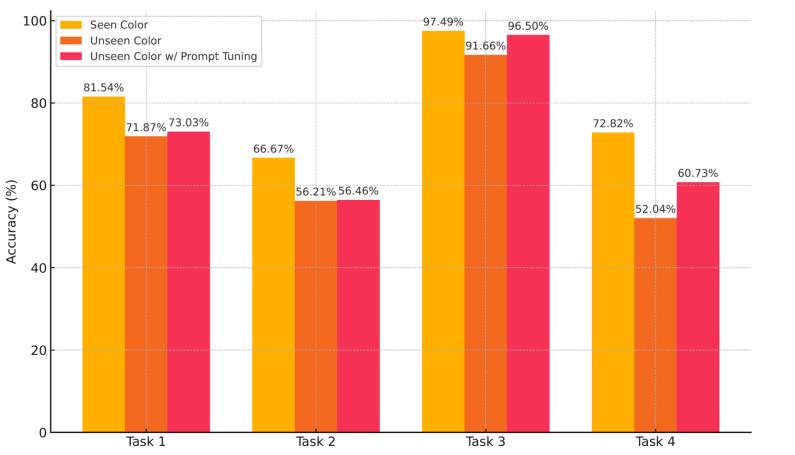
· Language Templates for Training:

- Language instructions are distributed evenly across three templates:
 - * Template 1: 'pack all the [colors] blocks'.
 - * Template 2: 'pack all the [colors] blocks into the box'.
 - * Template 3: 'pack all the [colors] blocks into the brown box'.

Other Training details: Simulation environments (Ravens with PyBullet) The foundation model is frozen, only the prompts are trained

Results

Task	Seen Color	Unseen Color	Unseen Color w/ Prompt Tuning
Task1	81.54%	71.87%	73.03%
Task2	66.67%	56.21%	56.46%
Task3	97.49%	91.66%	96.50%
Task4	72.82%	52.04%	60.73%



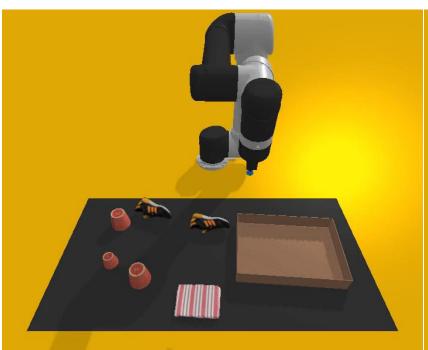
Demo

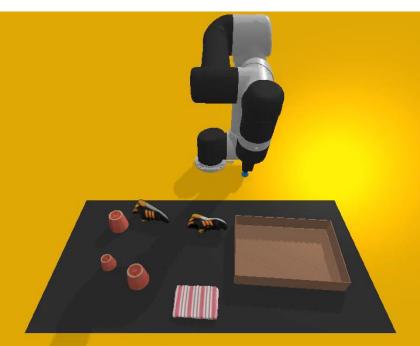
Task: Pack all the 'objects' in the brown box

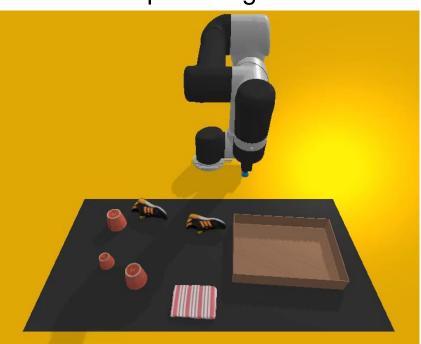
Pack all the red cups in the brown box

Pack all the red cups in the box

Pack all the red cups in the box w/ Prompt Tuning







Seen Color

Unseen Color

Unseen Color w/ Prompt Tuning

Thanks Everyone!