Autonomous
Trash Collection
System with Mobile
Manipulation

Group 13: Suryoun Lee, Ruoyu Xu, Swetha Vinay Argekar

Introduction

Problem

Current cleaning robots lack efficient, robust, and
scalable navigation.
Limited adaptability in dynamic environments.

Our Approach

Vision-guided navigation and manipulation.
Reinforcement learning (RL) for training navigation
and manipulation policies.

Goal

Develop a scalable, efficient, and adaptable
cleaning robot.

Test state-of-the-art RL-based methods in
real-world scenarios.

Related works

Grasp Grasp Pseudo-reset
Detection

Navigation

Fully Autonomous Real-World Reinforcement Learning with Applications to Mobile
Manipulation.

Deep reinforcement learning training separate navigation and grasping policy
Reward given to navigation policy when the robot grasps an object or initiates a grasp action

[Charles Sun, Jedrzej Orbik, Coline Devin, Brian Yang, Abhishek Gupta, Glen Berseth, and Sergey Levine.
Conference on Robot Learning, 2021]

Related works

Goal-Driven Autonomous Exploration Through Deep Reinforcement Learning

Reinis Cimurs, Il Hong Suh, Jin Han Lee

point vaiue b Mty o May oL be INGUGEd In the FANGE JEPENANg on NOABNG-POIE EUNGNG 1 he

https://arxiv.org/search/cs?searchtype=author&query=Cimurs,+R
https://arxiv.org/search/cs?searchtype=author&query=Suh,+I+H
https://arxiv.org/search/cs?searchtype=author&query=Lee,+J+H

Methods

Navigation Policy:
e RL-based policy trained for dynamic environments.
e Inputs: Simulated camera images for real-time decisions.

e Pre-trained policies used for robust navigation.

Grasping Policy:
e Traditional ROS and Movelt-based pipeline for object manipulation.

e Reliable gripper control for successful grasping tasks.

Hybrid Approach:
e Combines RL for adaptability with traditional methods for reliability.

e Ensures flexibility and performance stability in varying scenarios.

RL Trash Movelt

Navigation Detection Grasping OUTPUT
Policy

Environment

Gazebo Simulation Setup

e Platform: Gazebo integrated with ROS for realistic indoor
scenarios.
e Features:
o Dynamic obstacles (tables, walls, narrow pathways).
o Randomly placed trash items of various shapes and
colors.

Environment Components

e Camera Integration:
o Onboard camera captures real-time images for trash
detection and navigation.

e Gripper:
o Simulated gripper for object manipulation and trash
collection.

Dynamic Scenarios

e Moving obstacles and repositioned trash to test adaptability
and robustness.

Progress

Achievements

e Successfully set up Gazebo simulation environment integrated with ROS.
e Implemented a vision-guided navigation policy with reinforcement learning.
e Developed a Movelt-based grasping pipeline for object manipulation.

Progress

e Navigation Policy
o RL policy demonstrates consistent performance in dynamic environments.
o Initial success in avoiding obstacles and reaching target locations.

e Movelt Pipeline
e Current Status:
The Movelt-based grasping pipeline has been designed to handle predefined object grasping tasks reliably. However, the code
is still in the early stages of development and not fully functional. Current implementation struggles with adapting to objects of
varying sizes and positions.
e Challenges and Errors:
a. Grasp Accuracy: Difficulty in detecting the exact position of objects or inaccuracies in calculating position coordinates.
b. Error Messages: Unexpected failures in path planning or gripper control, reported by Movelt or ROS.
c. Robot Control: The gripper fails to fine-tune its approach at the target, either missing the object or approaching at an
incorrect angle.

pioneer3dx.rviz* - RViz

File Panels Help

[Displays
+ & Global Options
Fixed Frame odom
Background Color [48; 48; 48
Frame Rate 30
Default Light
v v Global Status: Ok
v Fixed Frame
» & Grid
* iy RobotModel
v v Status: Ok
Visual Enabled
Collision Enabled
Update Interval

Add

% Camera

(5 Time

Pause = Synchronization: Off v ROSTime: 90.23 ROS Elapsed: 89.67

def canera_callback(self, msg):
Convert ROS inage message to OpenCV format
Miteract | MoveCamera [JSelect €pForusCamera =mMeasure # 2DPoseEstimate #2DNavGoal § PublihPoint @ cv_image o self.bridge.imgmsg to cv2(msg, "ngBH)
Detect trash in the image and update trash observation
self trash_observation = self.detect_trash(cv_inage)

def detect_trash(self, inage):
Convert to HSV for color-based trash detection
hsv_inage = cv2.cvtColor (image, cv2,COLOR_BGR2HSY)
lower_color = (30, 150, 50) # Adjust these values based on trash color
upper_color = (50, 255, 255)
mask = cv2.inRange(hsv_image, lower_color, upper_color)
contours, _ = cv2. findContours(mask, cv2.RETR_EXTERNAL, cv2,CHAIN_APPROX_SIMPLE)

if contours:
Get the largest contour as trash item
largest_contour = max(contours, key=cv2.contourArea)
X ¥y W, h = cv2.boundingRect (largest_contour)
center_x, center_y = x +w ([2, y+h//2

Normalize coordinates
rel_x = (center_x - inage.shape[1] [2) | (image.shape[1] [2)
rel_y = (center_y - inage.shape[0] / 2) | (image.shape[0] [2)
return [rel_x, rel_y]

else:
return [0.0, 0.0] # No trash detected

Wall Time: 1730505065.42 ' Wall Elapsed: 101.20

limport rospy

from moveit commander import MoveGroupCommander, roscpp_initialize, roscpp_shutdown
from sensor_msgs.msg import Image

from cv_bridge import CvBridge

import cv2

Detect if the goal has been reached and give a large positive reward G ——
if distance < GOAL_REACHED_DIST: 98" FInitialize Ros node

rospy.init node(“trash_manipulator”, anonymous=True)
target = True # Initialize MoveIt

roscpp_initialize(sys.argv)
done = True self.arm_group = MoveGroupCommander(“arm")
self.gripper_group = MoveGroupCommander("gripper)

Add Trash Manipulation logic here AL LA

'f d) rospy.Subscriber(*/camera/rgb/image_raw", Image, self.camera_callback)
11 done: self.trash_position = None

rospy, loginfo("Goal reached. Initiating trash manipulation...") deficameracea{ibackias il magl:

Y “““Detect trash using the camera feed."""

manipulator = TrashManipulator() # Instantiate the TrashManipulator " cv_image = selr.bridge.imamsa_te_cvz(msg, “bars)

hsv_image = cv2.cvtColor(cv_image, cv2.COLOR_BGR2HSV)

manipulator.run() # Perforn trash collection task Spper_color = (30, 235, 293) & CJuSt based on trash color

uppir_colgrA=R(50.(§55._255) . . or

; bty R =S ve inRongs (han’ Inask. LOWSroEELor, UPPEEICOLHE

(Qﬁpx;lgg}ﬂiq("TraSh manlpulatlon Complete.") contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
. '] if contours:

robot_state = [distance, theta, action[], action(1]] R e e Rt i

state = np.append(laser_state, self.trash_observation) e lFotvash posititn = (camtir x, Lemter’$r”

except Exception as e:

reward = self.get_reward(target, collision, action, min_laser) r“"*‘ff"i‘f'r” Anscamerascaliback: =43
e_to_tras se H
return state, reward, done, target :

Move the arm to the detected trash position.™""

if self.trash_position:
rospy.-loginfo("“Moving to trash position..
target_pose = self.arm_group.get_current_pose().pose
target_pose.position.x = self.trash_position([e] / 1@0.0
target_pose.position.y = self.trash_position[1] / 1ee.@©
target_pose.position.z = ©.1 # Adjust height

self.arm_group.set_pose_target(target_pose)
Code added to previous source code -env setting SUCCESSES SRR ronpiga (RTINS
if success:

rospy.loginfo("Arm reached the target. Grasping...")
self.grasp_trash()

sp_trash(self):

Grasp the detected trash.
self.gripper_group.set_named_target(*“closed")
self.gripper_group.go(wait=True)

def release_trash(self):
“"“"“Release the trash into the bin."""
self.gripper_group.set named_target(“open®)
self.gripper_group.go(wait=True)

def run(self):
“etMain Loop. e
rospy.loginfo("“Starting trash manipulation...™)
while not rospy.is_shutdown():
if self.trash_position:
self.move to_trash()
self.grasp_trash()
rospy-.sleep(2) # Simulate moving trash
self.release_trash()

rospy.sleep(1) # Wait for trash to be detected

if name__ == “__main__":
Try:

Code we added to gripper - grasp trash manipulation B o

except rospy.ROSInterruptException:
pass

finally:
rescpp_shutdown()

Planning

Refine Navigation Policy:

e Continue to improve the RL-based navigation policy for more efficient pathfinding and robust collision avoidance in dynamic
environments.
e Address current challenges in handling complex obstacle arrangements.

Enhance Grasping Mechanism:

e Debug and optimize the Movelt pipeline to improve grasping success rates, focusing on varied object shapes, sizes, and positions.
e Integrate feedback from testing to fine-tune grasping parameters and improve adaptability.

Integrate System Components:

e Establish seamless interaction between the navigation policy and grasping mechanism to ensure coordinated operation.
e Address synchronization challenges between RL-based navigation and Movelt-based manipulation.

Evaluate Performance:

e Conduct final trials in the simulation environment to measure key performance metrics, including:
1. Trash detection accuracy.
2. Grasp success rate.
3. Navigation efficiency and overall task completion time.
e Compare performance across different object types and environmental conditions to validate robustness.

REFERENCE

[1] Charles Sun, Jedrzej Orbik, Coline Devin, Brian Yang, Abhishek Gupta, Glen Berseth, and Sergey
Levine. Fully Autonomous Real-World Reinforcement Learning with Applications to Mobile
Manipulation. Conference on Robot Learning, 2021.

[2] Max Bajracharya, James Borders, Richard Cheng, Dan Helmick, Lukas Kaul, Dan Kruse, John
Leichty, Jeremy Ma, Carolyn Matl, Frank Michel, Chavdar Papazov, Josh Petersen, Krishna Shankar,
and Mark Tjersland. Demonstrating Mobile Manipulation in the Wild: A Metrics- Driven Approach.
Robotics: Science and Systems XIX, Robotics: Science and Systems Foundation, July 2023.

[3] Daniel Honerkamp, Tim Welschehold, and Abhinav Valada. Learning Kinematic Feasibility for
Mobile Manipulation through Deep Reinforce- ment Learning. IEEE Robotics and Automation Letters,
6: 6289-6296, 2021.

[4] Reinis Cimurs. DRL-robot-navigation, GitHub. Available:
https://github.com/reiniscimurs/DRL-robot-navigation.

https://github.com/reiniscimurs/DRL-robot-navigation

T hank you

