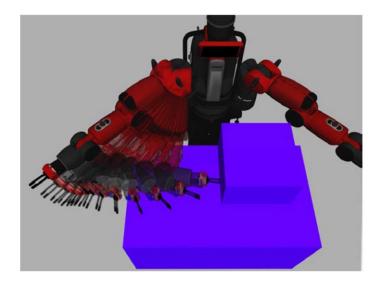
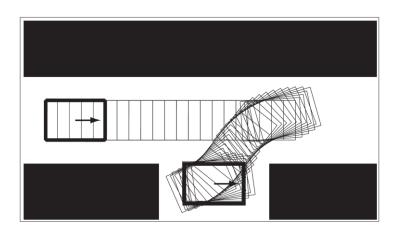


CS 6301 Special Topics: Introduction to Robot Manipulation and Navigation Professor Yu Xiang The University of Texas at Dallas

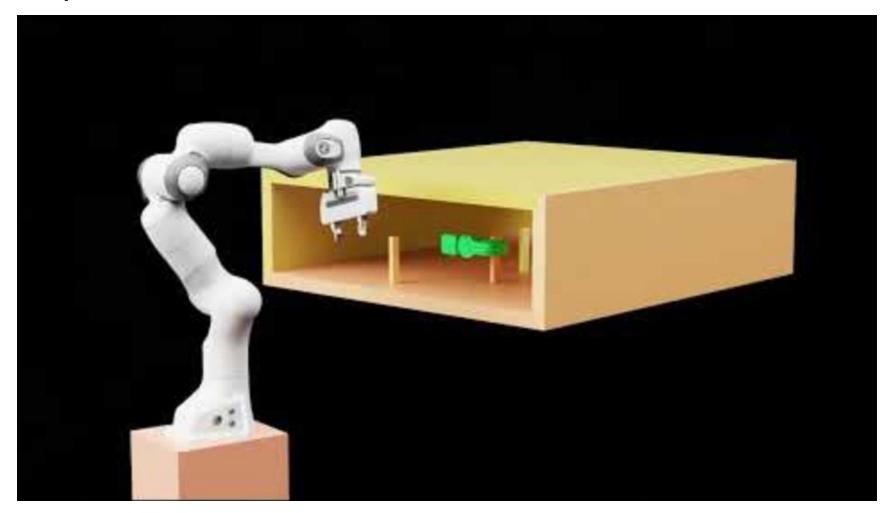
Motion Planning

- Motion planning: finding a robot motion from a start state to a goal state (A to B)
 - Avoids obstacles
 - Satisfies other constraints such as joint limits or torque limits





Example: cuRobo from NVIDIA



https://developer.nvidia.com/blog/cuda-accelerated-robot-motion-generation-in-milliseconds-with-curobo/

Configuration Space

- The configuration of a robot arm with n joints
 - n joint positions $q = (\theta_1, \dots, \theta_n)$

- Free C-space $C_{
 m free}$
 - Configurations where the robot neither penetrates an obstacle nor violated a joint limit

Robot State

• For second order dynamics, state is configuration and velocity

State
$$x=(q,v)\in \mathcal{X}$$
 $v=\dot{q}$

Control input
$$u \in \mathcal{U} \subset \mathbb{R}^m$$
 Force (acceleration)

• For first order dynamics, state is the configuration

State
$$q(x)$$

Control input: velocity \mathcal{X}_{f_1}

$$\mathcal{X}_{\text{free}} = \{ x \mid q(x) \in \mathcal{C}_{\text{free}} \}$$

Equations of Motion

• The equations of motion of a robot

 $\dot{x} = f(x, u)$ Forward dynamics Robot state Control inputs $u \in \mathcal{U} \subset \mathbb{R}^m$ For example $M(\theta)\ddot{ heta} = au(t) - h(heta, \dot{ heta}) - J^{\mathrm{T}}(heta)\mathcal{F}_{\mathrm{tip}}$

• Integral form

$$x(T) = x(0) + \int_0^T f(x(t), u(t))dt$$

Motion Planning

• Given an initial state $x(0) = x_{start}$ and a desired final state x_{goal} find a time T and a set of control $u : [0,T] \rightarrow \mathcal{U}$ such that the motion

$$x(T) = x(0) + \int_0^{\infty} f(x(t), u(t))dt$$

satisfies

$$x(T) = x_{\text{goal}}$$

$$q(x(t)) \in \mathcal{C}_{\text{free}} \text{ for all } t \in [0, T]$$

Types of Motion Planning Algorithms

- Path planning vs. motion planning
 - Path planning is a purely geometric problem of finding a collision-free path $q(s),s\,\in\,[0,1]$ $q(0)=q_{
 m start}$ $q(1)=q_{
 m goal}$
 - No concern about dynamics/control inputs
- Control inputs: m = n versus m < n
 - When m < n, the robot cannot follow many paths
 - E.g., a car, n = 3 (the position and orientation of the chassis in the plane) m = 2 (forward-backward motion and steering)
- Online vs. Offline
 - Online is needed when the environment is dynamic

Types of Motion Planning Algorithms

- Optimal vs. satisficing
 - In addition to reaching the goal state, we might want the motion planner to $\int_{-\infty}^{T} f^{T} = f^{T} u(t) dt$ minimize a cost

$$J = \int_0 L(x(t), u(t))dt$$

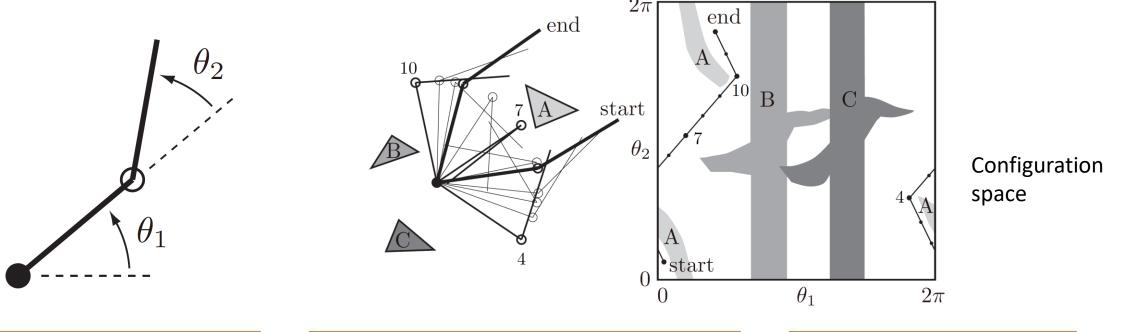
Time-optimal L=1 Minimum-effort $L = u^{\mathrm{T}}(t)u(t)$

- Exact vs. approximate
 - Approximate $||x(T) x_{\text{goal}}|| < \epsilon$
- With or without obstacles
 - Some motion planning problems are challenging even without obstacles
 - When m< n or optimality is desired

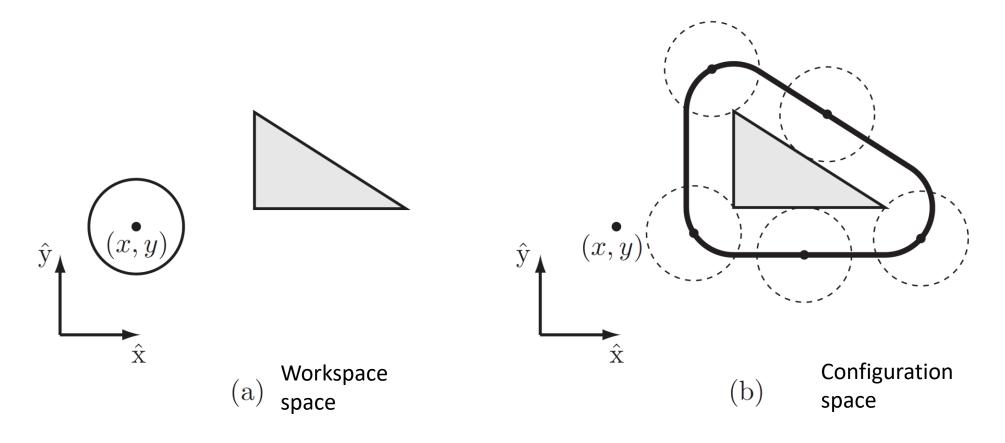
Properties of Motion Planners

- Multiple-query vs. single-query planning
 - Multiple-query can build a data structure for $\, {\cal C}_{\rm free}$
- "Anytime" planning
 - Continues to look for a better solution after a first solution is found
 - The planner can be stopped at anytime
- Completeness
 - A motion planner is said to be complete if it is guaranteed to find a solution in finite time if one exists, and to report failure if there is no feasible motion plan
- Computational complexity
 - The amount of time the planner takes to run or the amount of memory it requires

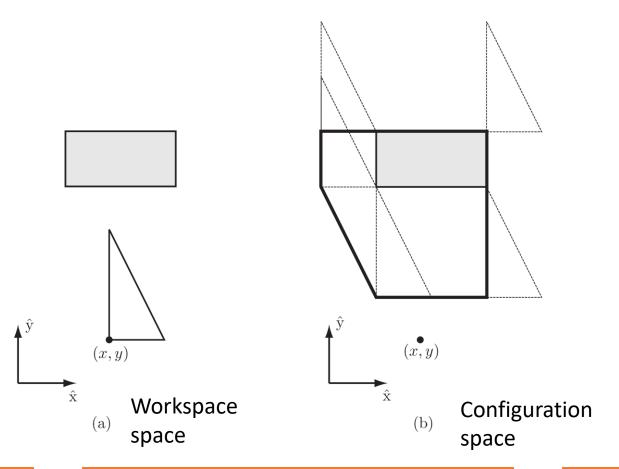
- Workspace obstacles partition the configuration space into two sets
 - Free space and obstacle space $\, \mathcal{C} = \mathcal{C}_{\mathrm{free}} \cup \mathcal{C}_{\mathrm{obs}} \,$
 - Joint limits are treated as obstacle in the configuration space
- A 2R planar arm



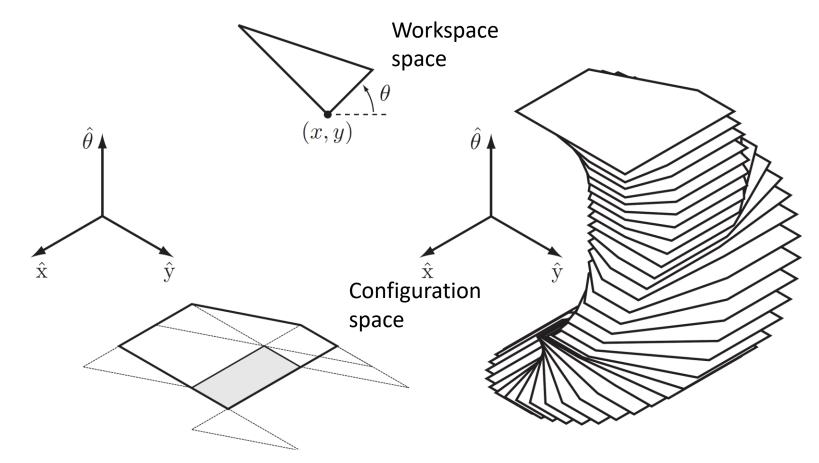
• A circular planar mobile robot



• A Polygonal Planar Mobile Robot That Translates



• A Polygonal Planar Mobile Robot That Translates and Rotates



Distance to Obstacles

- Given a C-obstacle ${\cal B}$ and a configuration q , the distance between a robot and the obstacle

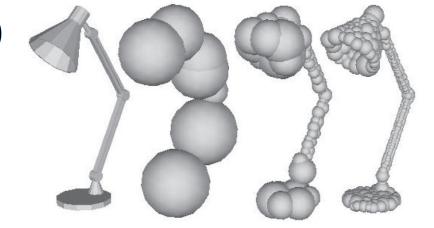
 $\begin{aligned} d(q,\mathcal{B}) &> 0 & \text{(no contact with the obstacle),} \\ d(q,\mathcal{B}) &= 0 & \text{(contact),} \\ d(q,\mathcal{B}) &< 0 & \text{(penetration).} \end{aligned}$

- A distance measurement algorithm determines $d(q, \mathcal{B})$
- A collision detection algorithm determines whether $d(q, \mathcal{B}_i) \leq 0$

Distance to Obstacles

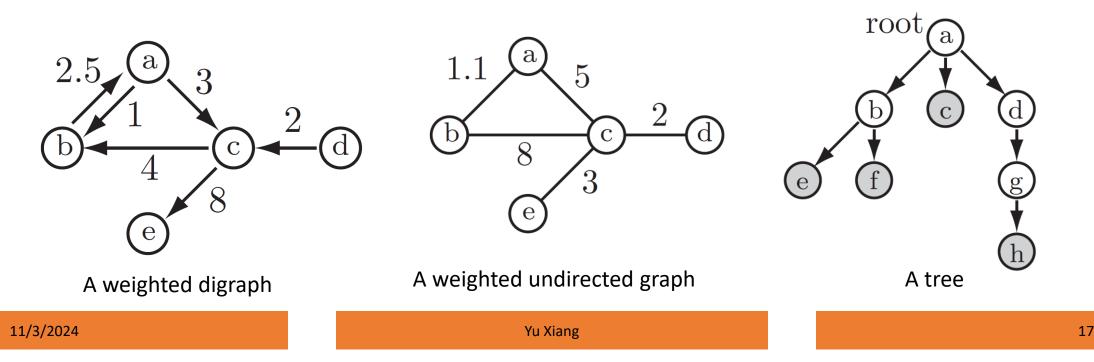
- Approximation of 3D shapes using 3D spheres
- Robot: <code>k</code> spheres of <code>radius</code> R_i centered at $r_i(q)$
- Obstacle: I spheres of radius B_j centered at b_j
- The distance between the robot and the obstacle

$$d(q, \mathcal{B}) = \min_{i,j} \|r_i(q) - b_j\| - R_i - B_j$$



Graphs for Motion Planning

- Node: a configuration or a state
- Edge: the ability to move between nodes without penetrating an obstacle or violating other constraints



Summary

- Overview of motion planning
- Configuration space obstacle
- Distance to obstacles
- Graphs for motion planning

Further Reading

• Chapter 10 in Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control. 1st Edition, 2017.