Forward Kinematics and Product of Exponentials Formula

CS 6301 Special Topics: Introduction to Robot Manipulation and Navigation Professor Yu Xiang The University of Texas at Dallas

NIV

Robot Kinematics

 The relationship between a robot's joint coordinates and its spatial layout

https://www.marginallyclever.com/2020/04/gradient-descent-inverse-kinematics-for-6dof-robot-arms/

• Forward kinematics of a robot: calculation of the position and orientation of its end-effector from its joint coordinates

End-effector transformation

Recap: Forward Kinematics with D-H Parameters

Forward kinematics of a 3R planar open chain.

- General cases
 - Attaching frames to links
 - Using homogeneous transformations

$$T_{04} = T_{01}T_{12}T_{23}T_{34}$$

$$= \begin{bmatrix} \cos \theta_1 & -\sin \theta_1 & 0 & 0\\ \sin \theta_1 & \cos \theta_1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} T_{12} = \begin{bmatrix} \cos \theta_2 & -\sin \theta_2 & 0 & L_1\\ \sin \theta_2 & \cos \theta_2 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$T_{12} = \begin{bmatrix} \cos \theta_3 & -\sin \theta_3 & 0 & L_2\\ \sin \theta_3 & \cos \theta_3 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} T_{34} = \begin{bmatrix} 1 & 0 & 0 & L_3\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $T_{i-1,i}$ Depends only on the joint variable $\, heta_i$

9/30/2024

Recap: Forward Kinematics with D-H Parameters

$$T_{0n}(\sigma_1, \dots, \sigma_n) = T_{01}(\sigma_1)T_{12}(\sigma_2) \cdots T_{n-1}$$

 $T_{i,i-1} \in SE(3)$

axis i-1

axis i

- Method 1: uses homogeneous transformations
 - Need to define the coordinates of frames
 - Denavit-Hartenberg Parameters

- Method 2: uses screw-axis representations of transformations
 - No need to define frame references

Screw-Axis Representations

• Screw axis: motion of a screw

https://mecharithm.com/learning/lesson/screw-motionand-exponential-coordinates-of-robot-motions-11

• Chasles-Mozzi theorem: every rigid-body displacement can be expressed as displacement along a fixed screw axis S in space

Exponential Coordinates of Rigid-Body Motions

- p(0) is rotated to $p(\theta)$
 - At a constant rate of 1 rad/s
- p(t): path traced by the tip of vector

Exponential Coordinates of Rigid-Body Motions $\dot{p}(t) = v + \hat{\omega} \times p(t)$ $\dot{\widetilde{p}}(t) = \begin{vmatrix} |\hat{\omega}| & v \\ 0 & 0 \end{vmatrix} \widetilde{p}(t)$ $[\mathcal{S}] = \begin{bmatrix} \hat{\omega} & v \\ 0 & 0 \end{bmatrix} \in se(3)$ $\widetilde{p}(t) = [\mathcal{S}]\widetilde{p}(t)$ $\widetilde{p}(t) = e^{[\mathcal{S}]t} \widetilde{p}(0)$ Transformation $T(t) = e^{[\mathcal{S}]t}$ Solution

Exponential Coordinates of Rigid-Body Motions

$$T(t) = e^{[\mathcal{S}]t}$$

If
$$\|\omega\| = 1$$
 $e^{[S]\theta} = \begin{bmatrix} e^{[\omega]\theta} & (I\theta + (1 - \cos\theta)[\omega] + (\theta - \sin\theta)[\omega]^2)v \\ 0 & 1 \end{bmatrix}$

If
$$\omega = 0$$
 and $\|v\| = 1$ $e^{[\mathcal{S}]\theta} = \begin{bmatrix} I & v\theta \\ 0 & 1 \end{bmatrix}$

Forward kinematics of a 3R planar open chain.

- A different approach
- Define M to the position and orientation of frame {4} when all the joint angles are zeros ("home" or "zero" position of the robot)

$$M = \begin{bmatrix} 1 & 0 & 0 & L_1 + L_2 + L_3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Forward kinematics of a 3R planar open chain.

 Consider each revolute joint as a zero-pitch screw-axis expressed in the {0} frame (fixed frame)

For joint 3

$$S_3 = \begin{bmatrix} \omega_3 \\ v_3 \end{bmatrix} \qquad \omega_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

 v_3 Linear velocity of the origin of {0} in the {0} frame when joint 3 rotates

$$\begin{aligned} v_3 &= -\omega_3 \times q_3 \\ q_3 &= (L_1 + L_2, 0, 0) \\ \mathcal{S}_3 &= \begin{bmatrix} \omega_3 \\ v_3 \end{bmatrix} = \begin{bmatrix} 0 \\ -(L_1 + L_2) \\ 0 \\ -(L_1 + L_2) \\ 0 \end{bmatrix} \end{aligned}$$

Cross Product

• Matrix notation

$$\mathbf{a} imes \mathbf{b} = egin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \ a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \end{bmatrix}$$

https://en.wikipedia.org/wiki/Cross_product

$$\begin{split} [\mathcal{S}_3] &= \begin{bmatrix} [\omega] & v \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & -(L_1 + L_2) \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad T_{04} = e^{[\mathcal{S}_3]\theta_3} M \qquad (\text{for } \theta_1 = 0) \\ T_{04} &= e^{[\mathcal{S}_2]\theta_2} e^{[\mathcal{S}_3]\theta_3} M \qquad (\text{for } \theta_1 = 0) \qquad [\mathcal{S}_2] = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & -L_1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \\ T_{04} &= e^{[\mathcal{S}_1]\theta_1} e^{[\mathcal{S}_2]\theta_2} e^{[\mathcal{S}_3]\theta_3} M \qquad [\mathcal{S}_1] = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \\ a \text{ product of matrix exponentials} \\ (\text{does not use any frame references, only {0} and M)} \qquad [\mathcal{S}_1] = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \end{split}$$

Yu Xiang

- Each link apply a screw motion to all the outward links
- Base frame {s}
- End-effector frame {b}

 $M \in SE(3)$

{b} in {s} when all the joint values are zeros

$$T = e^{[\mathcal{S}_n]\theta_n} M$$

{b} in {s} when joint n with value θ_n

$$T(\theta) = e^{[\mathcal{S}_1]\theta_1} \cdots e^{[\mathcal{S}_{n-1}]\theta_{n-1}} e^{[\mathcal{S}_n]\theta_n} M$$

Joint values $(\theta_1, \dots, \theta_n)$

- Space form of the product of exponentials formula
- Unlike D-H representation, no link reference frames need to be defined

$$T(\theta) = e^{[\mathcal{S}_1]\theta_1} e^{[\mathcal{S}_2]\theta_2} e^{[\mathcal{S}_3]\theta_3} M$$
$$M = \begin{bmatrix} 0 & 0 & 1 & L_1 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & -L_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $\mathcal{S}_1 = (\omega_1, v_1) \quad \omega_1 = (0, 0, 1) \quad v_1 = (0, 0, 0)$ $\omega_2 = (0, -1, 0) \quad q_2 = (L_1, 0, 0)$

$$w_2 = (0, -1, 0) \quad q_2 \quad (D_1, 0, 0)$$
$$v_2 = -\omega_2 \times q_2 = (0, 0, -L_1)$$

 $\omega_3 = (1, 0, 0) \quad q_3 = (0, 0, -L_2)$ $v_3 = -\omega_3 \times q_3 = (0, -L_2, 0)$

A 3R spatial open chain

S_1] =	$egin{array}{cccc} 0 & -1 \ 1 & 0 \ 0 & 0 \ 0 & 0 \ \end{array}$	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$	$[\mathcal{S}_2] =$	$\left[\begin{array}{ccc} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{array} \right]$	$ \begin{array}{ccc} -1 & 0 \\ 0 & 0 \\ 0 & -L_1 \\ 0 & 0 \end{array} $
$[S_3] = \begin{bmatrix} 0\\ 0\\ 0\\ 0\end{bmatrix}$	$\begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{bmatrix} 0\\ -L_2\\ 0\\ 0 \end{bmatrix}$			
	i	ω_i		v_i	

i	ω_i	v_i
1	(0, 0, 1)	(0, 0, 0)
2	(0, -1, 0)	$(0, 0, -L_1)$
3	(1,0,0)	$(0, L_2, 0)$

PoE forward kinematics for the 6R open chain

First three joints are at the same location

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 3L \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The RRPRRR spatial open chain

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & L_1 + L_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

i	ω_i	v_i
1	(0,0,1)	(0, 0, 0)
2	(1,0,0)	(0, 0, 0)
3	(0, 0, 0)	(0, 1, 0)
4	(0,1,0)	(0, 0, 0)
5	(1,0,0)	$(0, 0, -L_1)$
6	(0,1,0)	(0, 0, 0)

9/30/2024

$$M = \begin{bmatrix} -1 & 0 & 0 & L_1 + L_2 \\ 0 & 0 & 1 & W_1 + W_2 \\ 0 & 1 & 0 & H_1 - H_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

i	ω_i	v_i
1	(0, 0, 1)	(0,0,0)
2	(0, 1, 0)	$(-H_1, 0, 0)$
3	(0, 1, 0)	$(-H_1, 0, L_1)$
4	(0, 1, 0)	$(-H_1, 0, L_1 + L_2)$
5	(0,0,-1)	$(-W_1, L_1 + L_2, 0)$
6	(0, 1, 0)	$(H_2 - H_1, 0, L_1 + L_2)$

Universal Robots' UR5 6R robot arm

$$W_1 = 109 \text{ mm}, W_2 = 82 \text{ mm}, L_1 = 425 \text{ mm}$$

 $L_2 = 392 \text{ mm}, H_1 = 89 \text{ mm} \quad H_2 = 95 \text{ mm}$

$$W_1 = 109 \text{ mm}, W_2 = 82 \text{ mm}, L_1 = 425 \text{ mm}$$

 $L_2 = 392 \text{ mm}, H_1 = 89 \text{ mm} \quad H_2 = 95 \text{ mm}$

$$\theta_2 = -\pi/2$$
 and $\theta_5 = \pi/2$

$$T(\theta) = e^{[S_1]\theta_1} e^{[S_2]\theta_2} e^{[S_3]\theta_3} e^{[S_4]\theta_4} e^{[S_5]\theta_5} e^{[S_6]\theta_6} M$$

= $I e^{-[S_2]\pi/2} I^2 e^{[S_5]\pi/2} I M$
= $e^{-[S_2]\pi/2} e^{[S_5]\pi/2} M$

$$-[\mathcal{S}_2]\pi/2 = \begin{bmatrix} 0 & 0 & -1 & 0.089\\ 0 & 1 & 0 & 0\\ 1 & 0 & 0 & 0.089\\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad e^{[\mathcal{S}_5]\pi/2} = \begin{bmatrix} 0 & 1 & 0 & 0.708\\ -1 & 0 & 0 & 0.926\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T(\theta) = e^{-[\mathcal{S}_2]\pi/2} e^{[\mathcal{S}_5]\pi/2} M = \begin{bmatrix} 0 & -1 & 0 & 0.095 \\ 1 & 0 & 0 & 0.109 \\ 0 & 0 & 1 & 0.988 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

9/30/2024

Summary

- Forward kinematics
- Product of Exponentials Formula
 - Space form

Further Reading

• Chapter 4 in Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control. 1st Edition, 2017.