Forward Kinematics and Denavit-Hartenberg Parameters

CS 6301 Special Topics: Introduction to Robot Manipulation and Navigation Professor Yu Xiang The University of Texas at Dallas

NIV

Robot Kinematics

 The relationship between a robot's joint coordinates and its spatial layout

https://www.marginallyclever.com/2020/04/gradient-descent-inverse-kinematics-for-6dof-robot-arms/

- Forward kinematics of a robot: calculation of the position and orientation of its end-effector from its joint coordinates heta
- Recall robot links and joints

Yu Xiang

Forward kinematics of a 3R planar open chain.

- End-effector frame {4}
- Joint angles $(\theta_1, \theta_2, \theta_3)$
- Position and orientation of the end-effector frame

$$c = L_{1} \cos \theta_{1} + L_{2} \cos(\theta_{1} + \theta_{2}) + L_{3} \cos(\theta_{1} + \theta_{2} + \theta_{3}),$$

$$y = L_{1} \sin \theta_{1} + L_{2} \sin(\theta_{1} + \theta_{2}) + L_{3} \sin(\theta_{1} + \theta_{2} + \theta_{3}),$$

$$\phi = \theta_{1} + \theta_{2} + \theta_{3}.$$

Forward kinematics of a 3R planar open chain.

- General cases
 - Attaching frames to links
 - Using homogeneous transformations

$$T_{04} = T_{01}T_{12}T_{23}T_{34}$$

$$I_{1} = \begin{bmatrix} \cos \theta_{1} & -\sin \theta_{1} & 0 & 0\\ \sin \theta_{1} & \cos \theta_{1} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} T_{12} = \begin{bmatrix} \cos \theta_{2} & -\sin \theta_{2} & 0 & L_{1}\\ \sin \theta_{2} & \cos \theta_{2} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{23} = \begin{bmatrix} \cos \theta_{3} & -\sin \theta_{3} & 0 & L_{2}\\ \sin \theta_{3} & \cos \theta_{3} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{34} = \begin{bmatrix} 1 & 0 & 0 & L_{3}\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $T_{i-1,i}$ Depends only on the joint variable $\, heta_i$

- Method 1: uses homogeneous transformations
 - Need to define the coordinates of frames
 - Denavit-Hartenberg Parameters

Northwestern Engineering's legacy in robotics started in the 1950s when Dick Hartenberg, a professor, and Jacques Denavit, a PhD student, developed a way to represent mathematically how mechanisms move <u>https://robotics.northwestern.edu/history.html</u>

- Method 2: uses screw-axis representations of transformations
 - No need to define frame references
 - Next lecture

Denavit-Hartenberg Parameters

- Attach reference frames to each link of an open chain
- Derive forward kinematics using the relative displacements between adjacent line frames
- For a chain with n 1DOF joints, 0,...,n
 - The ground link is 0
 - The end-effect frame is attached to link n

$$T_{0n}(\theta_1, \dots, \theta_n) = T_{01}(\theta_1) T_{12}(\theta_2) \cdots T_{n-1,n}(\theta_n)$$
$$T_{i,i-1} \in SE(3)$$

Denavit-Hartenberg Parameters

• Assigning link frames

- \hat{z}_i -axis coincides with joint axis i
- $\hat{\mathrm{z}}_{i-1}\text{-}\mathrm{axis}$ coincides with joint axis i-1
- Origin of the link frame
 - Find the line segment that orthogonally intersects both the joint axes
 - Origin of frame {i-1} is the intersection of the line and the joint axis i-1
- \hat{x} -axis in the direction of the mutual perpendicular line pointing from (i-1)-axis to i-axis
- $\hat{y}\text{-}axis$ given by $\ \hat{x}\times\hat{y}=\hat{z}$

Denavit-Hartenberg (D-H) Parameters

Yu Xiang

- Link length: the length of the mutual perpendicular line a_{i-1}
 - Not the actual length of the physical link
- Line twist α_{i-1} the angle from \hat{z}_{i-1} to \hat{z}_i , measured about \hat{x}_{i-1}
- Line offset d_i
 - Distance from the intersection to the origin of the link-i frame
- Joint angle ϕ_i

the angle from $\hat{\mathbf{x}}_{i-1}$ to $\hat{\mathbf{x}}_i$, measured about the $\hat{\mathbf{z}}_i$ -axis

D-H Parameters

- For an open chain with n 1DOF joints, 4n D-H parameters
- For an open chain with all joints revolute
 - Link lengths a_{i-1}
 - Line twists α_{i-1} Constants
 - Line offsets d_i
 - Joint angle parameters are the joint variables $\,\phi_i$

D-H Parameters

- When adjacent revolute joint axes intersect
 - No mutual perpendicular line
 - Link length 0
 - $\hat{\mathbf{x}}_{i-1}$ perpendicular to the plane spanned by $\hat{\mathbf{z}}_{i-1}$ and $\hat{\mathbf{z}}_i$
- When adjacent revolute joint axes are parallel
 - Many possibilities for a mutually perpendicular line
 - Choose the one that is most physically intuitive and results in many zero parameters as possible
- Ground frame and End-Effector frame
 - Choose the one that is most physically intuitive and results in many zero parameters as possible

D-H Parameters

• Prismatic joints

- \hat{z}_{i} -axis positive direction of translation
 - d_i link offset is the joint variable
 - ϕ_i joint angle is constant
- x̂-axis in the direction of the mutual perpendicular line pointing from (i-1)-axis to i-axis
- \hat{y} -axis given by $\hat{x} \times \hat{y} = \hat{z}$

•

• Link frame transformation

$$T_{i-1,i} = \operatorname{Rot}(\hat{\mathbf{x}}, \alpha_{i-1})\operatorname{Trans}(\hat{\mathbf{x}}, a_{i-1})\operatorname{Trans}(\hat{\mathbf{z}}, d_i)\operatorname{Rot}(\hat{\mathbf{z}}, \phi_i)$$

- (a) A rotation of frame $\{i-1\}$ about its \hat{x} -axis by an angle α_{i-1} .
- (b) A translation of this new frame along its \hat{x} -axis by a distance a_{i-1} .
- (c) A translation of the new frame formed by (b) along its \hat{z} -axis by a distance d_i .
- (d) A rotation of the new frame formed by (c) about its \hat{z} -axis by an angle ϕ_i .

• Link frame transformation

• Link frame transformation

$$T_{i-1,i} = \operatorname{Rot}(\hat{\mathbf{x}}, \alpha_{i-1})\operatorname{Trans}(\hat{\mathbf{x}}, a_{i-1})\operatorname{Trans}(\hat{\mathbf{z}}, d_i)\operatorname{Rot}(\hat{\mathbf{z}}, \phi_i)$$

$$= \begin{bmatrix} \cos \phi_i & -\sin \phi_i & 0 & a_{i-1} \\ \sin \phi_i \cos \alpha_{i-1} & \cos \phi_i \cos \alpha_{i-1} & -\sin \alpha_{i-1} & -d_i \sin \alpha_{i-1} \\ \sin \phi_i \sin \alpha_{i-1} & \cos \phi_i \sin \alpha_{i-1} & \cos \alpha_{i-1} & d_i \cos \alpha_{i-1} \end{bmatrix}$$

$$\operatorname{Rot}(\hat{\mathbf{z}}, \phi_i) = \begin{bmatrix} \cos \phi_{i-1} & -\sin \phi_{i-1} & 0 & 0 \\ \sin \phi_{i-1} & \cos \phi_{i-1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\operatorname{Trans}(\hat{\mathbf{x}}, a_{i-1}) = \begin{bmatrix} 1 & 0 & 0 & a_{i-1} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\operatorname{Rot}(\hat{\mathbf{x}}, \alpha_{i-1}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha_{i-1} & -\sin \alpha_{i-1} & 0 \\ 0 & \cos \alpha_{i-1} & -\sin \alpha_{i-1} & 0 \\ 0 & \sin \alpha_{i-1} & \cos \alpha_{i-1} & 0 \\ 0 & \sin \alpha_{i-1} & \cos \alpha_{i-1} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Joint i

axis i-1

An RRRP spatial open chain in its zero position

A 6R spatial open chain in its zero position

 α_{i-1} the angle from \hat{z}_{i-1} to \hat{z}_i , measured about \hat{x}_{i-1} ϕ_i the angle from \hat{x}_{i-1} to \hat{x}_i , measured about the \hat{z}_i -axis

Summary

- Forward kinematics
- Denavit-Hartenberg Parameters

Further Reading

- Chapter 4 and Appendix C in Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control. 1st Edition, 2017.
- J. Denavit and R. S. Hartenberg. A kinematic notation for lower-pair mechanisms based on matrices. ASME Journal of Applied Mechanics, 23:215-221, 1955.