Introduction to Robotics

CS 6301 Special Topics: Introduction to Robot Manipulation and Navigation Professor Yu Xiang The University of Texas at Dallas

NIV

8/19/2024

Who am I?

- Assistant Professor in CS at UT Dallas (joined Fall 2021)
- Ph.D., Electrical and Computer Engineering, University of Michigan, 2016
- Research area: robotics and computer vision
- Intelligent Robotics and Vision Lab (IRVL) <u>https://labs.utdallas.edu/irvl/</u>

Introduce yourself

- Name
- Major program
- Which year in the program?
- Why are you interested in robotics?

Robots in Factories and Warehouses

Welding and Assembling

Material Handling

Delivering

Yu Xiang

8/19/2024

Robots in Human Environments

Cleaning Robots

Telepresence Robots

Smart Speakers

How can we have more powerful robots assisting people at homes or offices?

- Mobile manipulators
- Humanoids

Amazon Astro

Google Everyday Robots

Tesla Bot

Figure + OpenAl

https://www.youtube.com/watch?v=Sq1QZB5baNw

Future Intelligent Robots in Human Environments

Senior Care

Cooking

Assisting

Cleaning

Serving

Dish washing

8/19/2024

Robot Types

Humanoid Robots

• A humanoid robot is a robot with its body shape built to resemble the human body

Honda P series

iCub robot

Humanoid Robots

DO YOU KNOW THESE HUMANOID ROBOTS?

Boston Dynamics Atlas

Robot Manipulators

• A device used to manipulate materials without direct physical contact of the operator

Wheeled Robots

- Use wheels for locomotion
 - Self-driving cars

Starship Technologies

Amazon Astro Robot

Perseverance Rover

Walking Robots

• Legged robots, use articulated limbs to provide locomotion

Boston Dynamics

Robot Cassie

8/19/2024

Boston Dynamics

Other Robots

- Flying robots
 - Drones
- Swimming robots
 - Underwater gliders

Robotic Fish: *iSplash*-II

Snake robots

Two robot snakes. Left one has 64 motors (with 2 degrees of freedom per segment), the right one 10.

Robots vs. Humans

- Sensing
 - Robots: cameras, Inertial Measurement Units (IMUs), joint encoders
 - Humans: vision, vestibular, proprioceptive senses
- Control
 - Robots: motors
 - Humans: muscles
- Computation
 - Robots: robot brain, AI?
 - Humans: human brain

What is a Robot?

What is a Robot?

- A robot is a machine capable of carrying out a complex series of actions automatically (Wikipedia)
- A goal-oriented machine that can sense, plan and act
 - A robot senses its environment and uses that information, together with a goal, to plan some action
 - The action might be to move the tool of an arm-robot to grasp an object, or it might be to drive a mobile robot to some place

Robotic Systems

Our Focus in this Course

• Robot Manipulation (more than 2/3 of the course)

• Robot Navigation

Robot Manipulation

- The ways robots interact with objects
- Examples
 - Grasping an object
 - Placing an object
 - Pushing an object
 - Opening a door
 - Folding laundry
 - Etc.

https://am.is.mpg.de/research_projects/autonomous-robotic-manipulation

Robot Manipulation

Yu Xiang

6D Object Pose Estimation for Robot Manipulation

Yu Xiang

Robot Navigation

• Go from A to B without hitting anything

Occupancy Grid Mapping

- Occupancy grid
 - Status: unknown, occupied, empty

Learning Occupancy Grid Maps With Forward Sensor Models. Sebastian Thrun, 2002

Occupancy Grid Mapping

Navigation Demo using ROS

Credit: Gagan Bhat

What will you learn in this course?

- Design of robot manipulators and wheeled robots
- Kinematics and dynamics of robots
- Robot control in manipulation and navigation
- Robot perception in manipulation and navigation
- Robot Operating System (ROS) and robot simulators

What will you learn in this course?

- Mathematics in robotics
 - Lectures

- Programming in robotics
 - Homework and projects

Grading Policy

- Homework (50%)
 - 5 homework in total
 - Individual submission
- Team Project (45%)
 - 2 or 3 students for a project
 - Project proposal (5%)
 - Project mid-term report (10%)
 - Project presentation (15%)
 - Project final report (15%)
- In-class Activity (5%)
 - Quiz
- No final exam

Start thinking about the course project

Course Details

- Textbook
 - Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control. 1st Edition <u>http://hades.mech.northwestern.edu/images/7/7f/MR.pdf</u>
 - Kevin Lynch's lectures <u>https://modernrobotics.northwestern.edu/nu-gm-book-resource/foundations-of-robot-motion/</u>
- My office hour

```
Monday & Wednesday 3:00PM – 4:00 PM ECSS 4.702
```

- TA office hour: TBD
- Course access and navigation: <u>eLearning</u>

Questions?